datamover_primitives_xpu2.h 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include "xpu/kernel/cluster_header.h"
#include "xpu/kernel/debug.h"
#include "xpu/kernel/math.h"

20
namespace phi {
21
namespace kps {
22 23 24 25 26 27 28 29 30 31 32 33
namespace details {

template <typename T, int VecSize>
struct alignas(sizeof(T) * VecSize) VectorType {
  T val[VecSize];
};

/**
 * Configuration of broadcast. Calculate the input data index according to the
 * index of the output data. if input or output shape is [dim0, dim1] then dims
 * must be [dim1, dim0].
 */
34
#pragma pack(4)
35
struct BroadcastConfig {
36 37 38
  int strides_in[phi::DDim::kMaxRank];
  int strides_out[phi::DDim::kMaxRank];
  int in_dim[phi::DDim::kMaxRank];
N
niuliling123 已提交
39
  int kDims;
40 41 42 43 44 45

  HOSTDEVICE BroadcastConfig() {}

  HOSTDEVICE BroadcastConfig(const std::vector<int64_t>& out_dims,
                             const std::vector<int64_t>& in_dims,
                             int dim_size) {
46 47 48 49 50 51 52 53 54
    std::vector<int> strides_in_tmp;
    std::vector<int> strides_out_tmp;
    std::vector<int> dim_tmp;
    strides_in_tmp.resize(dim_size, 1);
    strides_out_tmp.resize(dim_size, 1);
    dim_tmp.resize(dim_size, 1);
    for (int i = 1; i < dim_size; i++) {
      strides_in_tmp[i] = strides_in_tmp[i - 1] * in_dims[i - 1];
      strides_out_tmp[i] = strides_out_tmp[i - 1] * out_dims[i - 1];
55 56
    }

57 58
    for (int i = 0; i < dim_size; i++) {
      dim_tmp[i] = in_dims[i];
59 60
    }

N
niuliling123 已提交
61
    kDims = dim_size;
62 63 64 65 66 67 68 69 70 71 72 73 74 75
    memcpy(strides_in, strides_in_tmp.data(), kDims * sizeof(int));
    memcpy(strides_out, strides_out_tmp.data(), kDims * sizeof(int));
    memcpy(in_dim, dim_tmp.data(), kDims * sizeof(int));
  }

  __device__ inline int operator()(int index_output) const {
    int index_src = 0;
#pragma unroll
    for (int i = kDims - 1; i >= 0; --i) {
      int tmp_index = (index_output / strides_out[i]);
      index_output = index_output - tmp_index * strides_out[i];
      index_src += (tmp_index % in_dim[i]) * strides_in[i];
    }
    return index_src;
76 77
  }
};
78
#pragma pack()
79

80 81 82 83 84 85 86 87 88 89
template <typename T>
__device__ __forceinline__ void WriteData(T* _global_ptr_ dst,
                                          T* src,
                                          int num) {
  if (num > 0) {
    LM2GM(src, dst, num * sizeof(T));
  }
}
#undef INT_BITS

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
}  // namespace details

/**
 * @brief Read 2D data from global memory to register according to Tx type, and
 * store it as Ty type into register.
 *
 * @template paraments
 * Tx: The type of data stored in the global memory.
 * Ty: The type of data that needs to be stored in registers.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size_nx: The maximum offset of the current block is size_nx elements in the
 * lowest dimension. The parameters are only calculated when isboundary = true.
 * size_ny: The maximum offset of the current block is size_ny elements in the
 * first dimension. The parameters are only calculated when isboundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
118 119 120 121 122
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
123
          bool IsBoundary = false>
124 125 126 127 128
__device__ __inline__ void ReadData(Ty* dst,
                                    const Tx _global_ptr_* src,
                                    int size_nx,
                                    int size_ny,
                                    int stride_nx,
129
                                    int stride_ny) {
130 131
  int thread_offset = core_id();
  int left_size_nx = size_nx - thread_offset;
132
  __local__ Tx in_temp[1];
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {  // for NX == 1 and NY == 1
    if (IsBoundary) {
      if (left_size_nx > 0) {
        GM2LM(src + thread_offset, in_temp, sizeof(Tx));
        dst[0] = static_cast<Ty>(in_temp[0]);
      }
    } else {
      GM2LM(src + thread_offset, in_temp, sizeof(Tx));
      dst[0] = static_cast<Ty>(in_temp[0]);
    }
  } else if (NX == 1) {  // for NX == 1 and NY != 1
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }
      GM2LM(src + thread_offset + idy * stride_ny, in_temp, sizeof(Tx));
      dst[idy] = static_cast<Ty>(in_temp[0]);
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
      GM2LM(src + thread_offset + idx * stride_nx, in_temp, sizeof(Tx));
      dst[idx] = static_cast<Ty>(in_temp[0]);
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny || idx * stride_nx >= left_size_nx) {
            break;
          }
        }
        int fix = thread_offset + idx * stride_nx + idy * stride_ny;
        GM2LM(src + fix, in_temp, sizeof(Tx));
        dst[idy * NX + idx] = static_cast<Ty>(in_temp[0]);
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: Initial value.
 */
template <typename T, int NX>
196
__device__ __inline__ void Init(T* dst, T init_data) {
197 198 199 200 201 202
#pragma unroll
  for (int i = 0; i < NX; i++) {
    dst[i] = init_data;
  }
}

203 204 205 206 207 208 209 210 211 212 213 214
/**
 * The difference from the above function is that
 * it supports different data types of inputs.
 */
template <typename T, typename ArgsT, int Index, int NX>
__device__ __forceinline__ void Init(ArgsT* dst, T init_data) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    std::get<Index>(dst[i]) = init_data;
  }
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/**
 * @brief Read 1D data from global memory to register. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), vectorized load data will be used to
 * improve memory access efficiency.
 *
 * @template paraments
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size: The current block needs to load size data continuously.
 */
236
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
237 238
__device__ __inline__ void ReadData(T* dst,
                                    const T _global_ptr_* src,
239
                                    int num) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        GM2LM(src + thread_offset + idx, in_temp, sizeof(T));
        dst[idx] = in_temp[0];
      }
    }
  } else {  // core_num() * NX < num
    GM2LM(src + thread_offset, dst, NX * sizeof(T));
  }
}

255 256 257
/**
 * @brief Read 1D data from global memory to register. The difference
 * from the above function is that it supports different data types of inputs.
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
 *
 * @template paraments
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
 * ArgsT: The Type if dst, ArgsT can be std::tuple<T> or std::tuple<Args>
 * Index: The index of data stored in dst.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size: The current block needs to load size data continuously.
276 277 278 279 280 281 282
 */
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          typename ArgsT,
          int Index,
283
          bool IsBoundary>
284
__device__ __forceinline__ void ReadData(ArgsT* dst,
285
                                         const T _global_ptr_* src,
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
                                         int num) {
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
  __local__ T in_vec[NX];
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        GM2LM(src + thread_offset + idx, in_temp, sizeof(T));
        std::get<Index>(dst[idx]) = in_temp[0];
      }
    }
  } else {  // core_num() * NX < num
    GM2LM(src + thread_offset, in_vec, NX * sizeof(T));
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      std::get<Index>(dst[idx]) = in_vec[idx];
    }
  }
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * @brief Read 2D data from global memory to registers with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: Raw input data pointer of kernel.
 * block_offset: Data offset of this block, core_num() *  cluster_id() * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
N
niuliling123 已提交
332
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
333 334
__device__ __inline__ void ReadDataBc(T* dst,
                                      const T _global_ptr_* src,
335
                                      uint32_t block_offset,
N
niuliling123 已提交
336
                                      details::BroadcastConfig config,
337 338
                                      int total_num_output,
                                      int stride_nx,
339
                                      int stride_ny) {
340 341 342 343 344 345 346 347 348 349 350
  uint32_t thread_offset = block_offset + core_id();
  uint32_t index_src = 0;
  __local__ T in_temp[1];

#pragma unroll
  for (int ny = 0; ny < NY; ++ny) {
#pragma unroll
    for (uint32_t nx = 0; nx < NX; ++nx) {
      uint32_t index_output = thread_offset + ny * stride_ny + nx * stride_nx;
      index_src = 0;
      if (IsBoundary) {
351
        if (index_output >= (uint32_t)total_num_output) {
352 353 354
          break;
        }
      }
355
      index_src = config(index_output);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
      GM2LM(src + index_src, in_temp, sizeof(T));
      dst[nx + ny * NX] = in_temp[0];
    }
  }
}

/**
 * @brief Read 2D data from global memory to register with reduce form.
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The input data pointer of this block.
 * block_offset: The data offset of this block, blockDim.x * cluster_id() * NX.
 * index_cal: Calculation configuration of Reduce. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * size_nx: The current block needs to load size_nx columns of data, this
 * parameter will participate in the calculation when isboundary = true.
 * size_ny: The current block needs to load size_ny rows of data, this parameter
 * will participate in the calculation when isboundary = true.
 * will be used when IsBoundary = true.
 * stride_nx: Each read one element stride stride_nx columns.
 * stride_ny: Each read one element stride stride_ny raws.
 * reduce_last_dim: Used to indicate whether the dimension of reduce contains
 * the lowest dimension.
 */
393 394
template <typename Tx,
          typename Ty,
395 396 397 398 399
          int NX,
          int NY,
          int BlockSize,
          int Rank,
          typename IndexCal,
400
          typename Functor,
401
          bool IsBoundary = false>
402 403 404 405 406 407 408 409 410 411
__device__ __forceinline__ void ReadDataReduce(Ty* dst,
                                               const Tx* __restrict__ src,
                                               int block_offset,
                                               const IndexCal& index_cal,
                                               int size_nx,
                                               int size_ny,
                                               int stride_nx,
                                               int stride_ny,
                                               Functor func,
                                               bool reduce_last_dim) {
412
  __local__ Tx in_temp[1];
413
  int thread_offset = 0;
414
  int left_idx = 0;
415
  if (reduce_last_dim) {
416 417
    thread_offset = core_id();
    left_idx = 0;
418
  } else {
419 420
    thread_offset = 0;
    left_idx = 0;
421 422 423 424 425 426
  }

  if (NX == 1) {
#pragma unroll
    for (int ny = 0; ny < NY; ++ny) {
      if (IsBoundary) {
427
        if (thread_offset >= size_ny) {
428 429 430
          break;
        }
      }
431 432 433
      uint32_t index_src = index_cal(thread_offset + block_offset);
      GM2LM(src + index_src, in_temp, sizeof(Tx));
      dst[ny] = static_cast<Ty>(func(in_temp[0]));
434 435 436 437 438 439 440 441
      thread_offset += stride_ny;
    }
  } else {
#pragma unroll
    for (int nx = 0; nx < NX; ++nx) {
#pragma unroll
      for (int ny = 0; ny < NY; ++ny) {
        if (IsBoundary) {
442 443
          if ((thread_offset >= size_ny) ||
              (left_idx + nx * stride_nx >= size_nx)) {
444 445 446
            break;
          }
        }
447 448 449
        uint32_t index_src = index_cal(thread_offset + block_offset);
        GM2LM(src + index_src, in_temp, sizeof(Tx));
        dst[nx + ny * NX] = static_cast<Ty>(func(in_temp[0]));
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        thread_offset += stride_ny;
      }
    }
  }
}
/**
 * @brief Write 1D data from registers to global memory. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), the data will be vectorized to improve the
 * data loading efficiency
 *
 * @template paraments
 * T: The type of data.
 * NX: The number of data continuously writed by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The data pointer of the current block.
 * src: The register pointer, the size is NX * NY.
 * size: The current block needs to load size elements continuously.
 */

template <typename T, int NX, int NY, int BlockSize, bool IsBoundary>
__device__ void WriteData(T _global_ptr_* dst, const T* src, int num) {
  int thread_offset = core_id() * NX;
  __local__ T in_temp[1];
  if (IsBoundary) {  // core_num() * NX > num
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        in_temp[0] = src[idx];
        LM2GM(in_temp, dst + idx + thread_offset, sizeof(T));
      }
    }
  } else {  // core_num() * NX < num
    LM2GM(src, dst + thread_offset, NX * sizeof(T));
  }
}

/**
 * @brief Write 2D data from register to global memory according to Tx type, and
 * store it as Ty type.
 *
 * @template paraments
 * Tx: The type of data that needs to be stored in registers.
 * Ty: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: Data pointer of the current block.
 * src: The register pointer of the thread, the size is NX * NY.
 * size_nx: The current block needs to load size_nx columns of data, this
 * parameter will be used when IsBoundary = true.
 * size_ny: The current block needs to load size_ny rows of data. This parameter
 * will be used when IsBoundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
520 521 522 523 524
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
525
          bool IsBoundary = false>
526 527 528 529 530
__device__ __inline__ void WriteData(Ty _global_ptr_* dst,
                                     const Tx* src,
                                     int size_nx,
                                     int size_ny,
                                     int stride_nx,
531
                                     int stride_ny) {
532 533 534 535 536 537 538 539 540
  int thread_offset = core_id();
  int left_size_nx = size_nx - thread_offset;
  __local__ Ty in_temp[1];

  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {
    if (IsBoundary) {
      if (left_size_nx > 0) {
        in_temp[0] = static_cast<Ty>(src[0]);
541
        LM2GM(in_temp, dst + thread_offset, sizeof(Ty));
542 543 544
      }
    } else {
      in_temp[0] = static_cast<Ty>(src[0]);
545
      LM2GM(in_temp, dst + thread_offset, sizeof(Ty));
546 547 548 549 550 551 552 553 554 555 556
    }
  } else if (NX == 1) {
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }

      in_temp[0] = static_cast<Ty>(src[idy]);
557
      LM2GM(in_temp, dst + thread_offset + idy * stride_ny, sizeof(Ty));
558 559 560 561 562 563 564 565 566 567 568
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }

      in_temp[0] = static_cast<Ty>(src[idx]);
569
      LM2GM(in_temp, dst + thread_offset + idx * stride_nx, sizeof(Ty));
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny) {
            break;
          }
        }
        in_temp[0] = static_cast<Ty>(src[idx + idy * NX]);
587 588
        LM2GM(in_temp,
              dst + thread_offset + idx * stride_nx + idy * stride_ny,
589
              sizeof(Ty));
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
template <typename T, int NX, bool IsBoundary = false>
607
__device__ __inline__ void Init(T* dst, T* init_data, int num) {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
#pragma unroll
  for (int i = 0; i < NX; i++) {
    if (IsBoundary) {
      if (i >= num) {
        break;
      }
    }
    dst[i] = init_data[i];
  }
}

/**
 * @brief Read 1D data from global memory to register with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data continuously loaded by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x core_num(), boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The original input data pointer of kernel.
 * block_offset: The data offset of this block, core_num() * blockIdx.x * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 */
N
niuliling123 已提交
642 643 644 645 646 647
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
__device__ __inline__ void ReadDataBc(T* dst,
                                      const T _global_ptr_* src,
                                      uint32_t block_offset,
                                      const details::BroadcastConfig& config,
                                      int total_num_output) {
648 649
  int thread_offset = block_offset + core_id() * NX;
  int index_src = 0;
650

651
  __local__ T in_temp;
652
#pragma unroll
653 654
  for (int nx = 0; nx < NX; ++nx) {
    int index_output = thread_offset + nx;
655 656 657 658 659 660
    index_src = 0;
    if (IsBoundary) {
      if (index_output >= total_num_output) {
        break;
      }
    }
661 662 663
    index_src = config(index_output);
    GM2LM(src + index_src, &in_temp, sizeof(T));
    dst[nx] = in_temp;
664 665 666
  }
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/**
 * @brief Initialize register with data index.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 * NY: Number of data to initialize, NY only can be 1.
 * BlockSize: Identifies the current device thread index method. For xpu,
 * core_id() is used as the index.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
template <typename T, int NX, int NY, int BlockSize>
__device__ __forceinline__ void InitWithDataIndex(T* dst, int block_offset) {
  int thread_offset = block_offset + core_id() * NX;
#pragma unroll
  for (int nx = 0; nx < NX; ++nx) {
    dst[nx] = static_cast<T>(thread_offset + nx);
  }
}

690
}  // namespace kps
691
}  // namespace phi