spectral_norm_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/spectral_norm_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class SpectralNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("U"),
                   "Input(U) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("V"),
                   "Input(V) of SpectralNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SpectralNormOp should not be null.");

    auto dim_weight = ctx->GetInputDim("Weight");
D
dengkaipeng 已提交
36 37 38
    auto rank_weight = dim_weight.size();
    PADDLE_ENFORCE(rank_weight >= 2 && rank_weight <= 5,
                   "The rank of Input(Weights) can only be 2, 3,"
D
dengkaipeng 已提交
39 40 41 42
                   "4, 5 for fc, conv1d, conv2d, conv3d layers.");

    int dim = ctx->Attrs().Get<int>("dim");
    int power_iters = ctx->Attrs().Get<int>("power_iters");
D
dengkaipeng 已提交
43
    PADDLE_ENFORCE(dim == 0 || dim == 1, "Attr(dim) can only be 0 or 1");
D
dengkaipeng 已提交
44 45 46
    PADDLE_ENFORCE(power_iters >= 0,
                   "Attr(power_iters) should be larger equal then 0");

D
dengkaipeng 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    int h = dim_weight[dim];
    int w = 1;
    for (int i = 0; i < rank_weight; i++) {
      if (i != dim) {
        w *= dim_weight[i];
      }
    }
    auto dim_u = ctx->GetInputDim("U");
    auto dim_v = ctx->GetInputDim("V");
    PADDLE_ENFORCE_EQ(dim_u[0], h,
                      "Input(U) dims[0] should be equal to "
                      "Input(Weight) dims[Attr(dim)]");
    PADDLE_ENFORCE_EQ(
        dim_v[0], w,
        "Input(V) dims[0] should be equal to "
        "the product of Input(Weight) dims except dims[Attr(dim)]");

D
dengkaipeng 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    ctx->SetOutputDim("Out", dim_weight);
    ctx->ShareLoD("Weight", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
                                   ctx.GetPlace());
  }
};

class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Weight",
             "The input weight tensor of spectral_norm operator, "
             "This can be a 2-D, 3-D, 4-D, 5-D tensor which is the"
             "weights of fc, conv1d, conv2d, conv3d layer.");
    AddInput("U",
             "The weight_u tensor of spectral_norm operator, "
             "This can be a 1-D tensor in shape [H, 1],"
             "H is the 1st dimentions of Weight after reshape"
87 88 89 90
             "corresponding by Attr(dim). As for Attr(dim) = 1"
             "in conv2d layer with weight shape [M, C, K1, K2]"
             "Weight will be reshape to [C, M*K1*Kw], U will"
             "be in shape [C, 1].");
D
dengkaipeng 已提交
91
    AddInput("V",
92
             "The weight_v tensor of spectral_norm operator, "
D
dengkaipeng 已提交
93 94
             "This can be a 1-D tensor in shape [W, 1],"
             "W is the 2nd dimentions of Weight after reshape"
95 96 97 98
             "corresponding by Attr(dim). As for Attr(dim) = 1"
             "in conv2d layer with weight shape [M, C, K1, K2]"
             "Weight will be reshape to [C, M*K1*Kw], V will"
             "be in shape [M*K1*K2, 1].");
D
dengkaipeng 已提交
99 100 101 102 103 104
    AddOutput("Out",
              "The output weight tensor of spectral_norm operator, "
              "This tensor is in same shape with Input(Weight).");

    AddAttr<int>("dim",
                 "dimension corresponding to number of outputs,"
105 106 107 108
                 "it should be set as 0 if Input(Weight) is the"
                 "weight of fc layer, and should be set as 1 if"
                 "Input(Weight) is the weight of conv layer,"
                 "default is 0."
D
dengkaipeng 已提交
109 110 111 112 113 114 115 116 117 118 119
        .SetDefault(0);
    AddAttr<int>("power_iters",
                 "number of power iterations to calculate"
                 "spectral norm, default is 1.")
        .SetDefault(1);
    AddAttr<float>("eps",
                   "epsilob for numerical stability in"
                   "calculating norms")
        .SetDefault(1e-12);

    AddComment(R"DOC(
120
          This layer calculates the spectral normalize value of weight of
121 122
          fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
          tensor.
D
dengkaipeng 已提交
123

124 125 126
          Spectral normalization stabilizes the training of critic in GANs
          (Generative Adversarial Networks). This layer rescaling weight tensor
          with spectral normalize value.
D
dengkaipeng 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
          For spectral normalization calculations, we rescaling weight
          tensor with \sigma, while \sigma{\mathbf{W}} is

            \sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}

          We calculate \sigma{\mathbf{W}} through power iterations as

            \mathbf{v} = \mathbf{W}^{T} \mathbf{u}
            \mathbf{v} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}
            \mathbf{u} = \mathbf{W}^{T} \mathbf{v}
            \mathbf{u} = \frac{\mathbf{u}}{\|\mathbf{u}\|_2}

          And \sigma should be

            \sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

          For details of spectral normalization, please refer to paper: 
          `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
D
dengkaipeng 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
         )DOC");
  }
};

class SpectralNormOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Weight"), "Input(Weight) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("U"), "Input(U) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("V"), "Input(V) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("Weight");
    if (ctx->HasOutput(framework::GradVarName("Weight"))) {
      ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
                                   ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
REGISTER_OP_CPU_KERNEL(
    spectral_norm,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    spectral_norm_grad,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);