sum_op.h 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
14
#include "paddle/framework/lod_tensor_array.h"
15
#include "paddle/framework/op_registry.h"
Q
QI JUN 已提交
16 17
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
18 19 20 21 22

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
23 24
using SelectedRows = framework::SelectedRows;
using LoDTensor = framework::LoDTensor;
25 26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
30
class SumKernel : public framework::OpKernel<T> {
31
 public:
32
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
33
    auto in_vars = context.MultiInputVar("X");
Q
QI JUN 已提交
34 35 36
    int N = in_vars.size();
    auto out_var = context.OutputVar("Out");

Y
Yu Yang 已提交
37 38
    bool in_place = out_var == in_vars[0];

Q
QI JUN 已提交
39
    if (out_var->IsType<framework::LoDTensor>()) {
40
      auto *out = context.Output<Tensor>("Out");
Q
QI JUN 已提交
41 42 43 44
      out->mutable_data<T>(context.GetPlace());

      auto result = EigenVector<T>::Flatten(*out);

Y
Yu Yang 已提交
45
      if (!in_place) {
Q
QI JUN 已提交
46 47 48
        math::SetConstant<DeviceContext, T> constant_functor;
        constant_functor(context.template device_context<DeviceContext>(), out,
                         0.0);
Y
Yu Yang 已提交
49
      }
Q
QI JUN 已提交
50

Q
QI JUN 已提交
51 52 53
      math::SelectedRowsAddToTensor<DeviceContext, T> functor;
      auto &place =
          *context.template device_context<DeviceContext>().eigen_device();
Y
Yu Yang 已提交
54 55
      // If in_place, just skip the first tensor
      for (int i = in_place ? 1 : 0; i < N; i++) {
Q
QI JUN 已提交
56
        if (in_vars[i]->IsType<framework::LoDTensor>()) {
57
          auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
58 59 60
          if (in_t.numel() == 0) {
            continue;
          }
Q
QI JUN 已提交
61 62 63
          auto in = EigenVector<T>::Flatten(in_t);
          result.device(place) = result + in;
        } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
64
          auto &in_t = in_vars[i]->Get<framework::SelectedRows>();
Q
QI JUN 已提交
65
          functor(context.template device_context<DeviceContext>(), in_t, out);
Q
QI JUN 已提交
66 67 68 69 70
        } else {
          PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
        }
      }
    } else if (out_var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
71
      PADDLE_ENFORCE(!in_place, "SelectedRows not support inplace sum now");
72 73
      auto *out = context.Output<SelectedRows>("Out");
      auto *out_value = out->mutable_value();
Q
QI JUN 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86

      // Runtime InferShape
      size_t first_dim = 0;
      for (int i = 0; i < N; i++) {
        first_dim += in_vars[i]->Get<SelectedRows>().rows().size();
      }
      auto in_dim = in_vars[0]->Get<SelectedRows>().value().dims();
      auto in_dim_vec = framework::vectorize(in_dim);
      in_dim_vec[0] = static_cast<int64_t>(first_dim);

      out_value->Resize(framework::make_ddim(in_dim_vec));
      out_value->mutable_data<T>(context.GetPlace());

Q
QI JUN 已提交
87
      math::SelectedRowsAddTo<DeviceContext, T> functor;
Q
QI JUN 已提交
88 89 90 91

      int64_t offset = 0;
      for (int i = 0; i < N; i++) {
        PADDLE_ENFORCE_EQ(out->height(),
92
                          in_vars[i]->Get<SelectedRows>().height());
Q
QI JUN 已提交
93 94
        functor(context.template device_context<DeviceContext>(),
                in_vars[i]->Get<SelectedRows>(), offset, out);
Q
QI JUN 已提交
95 96
        offset += in_vars[i]->Get<SelectedRows>().value().numel();
      }
97 98 99 100 101 102 103 104 105 106 107 108 109
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      auto &out_array = *out_var->GetMutable<framework::LoDTensorArray>();
      for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) {
        PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensorArray>(),
                       "Only support all inputs are TensorArray");
        auto &in_array = in_vars[i]->Get<framework::LoDTensorArray>();

        for (size_t i = 0; i < in_array.size(); ++i) {
          if (in_array[i].numel() != 0) {
            if (i >= out_array.size()) {
              out_array.resize(i + 1);
            }
            if (out_array[i].numel() == 0) {
Y
Yang Yu 已提交
110
              VLOG(10) << context.op().Output("Out") << " just copy";
D
dzhwinter 已提交
111 112
              framework::CopyFrom(in_array[i], in_array[i].place(),
                                  context.device_context(), &out_array[i]);
113 114
              out_array[i].set_lod(in_array[i].lod());
            } else {
Y
Yang Yu 已提交
115
              VLOG(10) << context.op().Output("Out") << " merged";
116 117 118
              PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod());
              auto in = EigenVector<T>::Flatten(in_array[i]);
              auto result = EigenVector<T>::Flatten(out_array[i]);
Q
QI JUN 已提交
119 120
              result.device(*context.template device_context<DeviceContext>()
                                 .eigen_device()) = result + in;
121 122 123 124 125 126 127
            }
          }
        }
      }
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
                   out_var->Type().name());
128 129 130 131 132
    }
  }
};
}  // namespace operators
}  // namespace paddle