adam_kernel.cu 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/selected_rows/adam_kernel.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/adam_functors.h"
#include "paddle/phi/kernels/funcs/for_range.h"

namespace phi {
namespace sr {

template <typename T>
__global__ void UpdateBetaPow(T beta1,
                              T beta2,
                              const T* beta1_pow_,
                              const T* beta2_pow_,
                              T* beta1_pow_out,
                              T* beta2_pow_out) {
  *beta1_pow_out = beta1 * beta1_pow_[0];
  *beta2_pow_out = beta2 * beta2_pow_[0];
}

template <typename T, typename MT>
__global__ void SparseAdamCUDAKernelREG(MT beta1,
                                        MT beta2,
                                        MT epsilon,
                                        const MT beta1_pow,
                                        const MT beta2_pow,
                                        const MT* mom1_,
                                        MT* mom1_out_,
                                        const MT* mom2_,
                                        MT* mom2_out_,
                                        const MT* lr_,
                                        const T* grad_,
                                        const T* param_,
                                        T* param_out_,
                                        const MT* master_param,
                                        MT* master_param_out,
                                        const int64_t* rows_,
                                        int64_t row_numel,
                                        int64_t row_count,
                                        bool lazy_mode,
                                        int ndim) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  MT lr = *lr_;

  for (; id < ndim; id += blockDim.x * gridDim.x) {
    auto row_idx =
        phi::funcs::BinarySearch<int64_t>(rows_, row_count, id / row_numel);
    if (lazy_mode && row_idx < 0) {
      return;
    } else {
      MT mom1 = mom1_[id];
      MT mom2 = mom2_[id];
      MT p = master_param ? master_param[id] : static_cast<MT>(param_[id]);
      MT g = row_idx >= 0
                 ? static_cast<MT>(grad_[row_idx * row_numel + id % row_numel])
                 : static_cast<MT>(0);
      mom1 = beta1 * mom1 + (static_cast<MT>(1.0) - beta1) * g;
      mom2 = beta2 * mom2 + (static_cast<MT>(1.0) - beta2) * g * g;

      MT denom =
          (sqrt(mom2) / sqrt(static_cast<MT>(1.0) - beta2_pow)) + epsilon;
      p += (mom1 / denom) * (-(lr / (static_cast<MT>(1.0) - beta1_pow)));

      // Write back to global memory
      mom1_out_[id] = mom1;
      mom2_out_[id] = mom2;
      param_out_[id] = static_cast<T>(p);
      if (master_param_out) {
        master_param_out[id] = p;
      }
    }
  }
}

template <typename T, typename Context>
void AdamDenseParamSparseGradKernel(
    const Context& dev_ctx,
    const DenseTensor& param,
    const SelectedRows& grad,
    const DenseTensor& learning_rate,
    const DenseTensor& moment1,
    const DenseTensor& moment2,
    const DenseTensor& beta1_pow,
    const DenseTensor& beta2_pow,
105 106
    const paddle::optional<DenseTensor>& master_param,
    const paddle::optional<DenseTensor>& skip_update,
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow,
    DenseTensor* param_out,
    DenseTensor* moment1_out,
    DenseTensor* moment2_out,
    DenseTensor* beta1_pow_out,
    DenseTensor* beta2_pow_out,
    DenseTensor* master_param_outs) {
  using MPDType = typename phi::dtype::MPTypeTrait<T>::Type;

  VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

  bool skip_update_ = false;
  if (skip_update.is_initialized()) {
    PADDLE_ENFORCE_EQ(
        skip_update->numel(),
        1,
        errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d",
                                skip_update->numel()));
    std::vector<bool> skip_update_vec;
    paddle::framework::TensorToVector(*skip_update, dev_ctx, &skip_update_vec);
    skip_update_ = skip_update_vec[0];
  }
  // skip_update=true, just copy input to output, and TensorCopy will call
  // mutable_data
  if (skip_update_) {
    VLOG(4) << "Adam skip update";
    phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
    phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
    phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
142 143
    phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
    phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    return;
  }

  MPDType beta1_ = beta1.to<MPDType>();
  MPDType beta2_ = beta2.to<MPDType>();
  MPDType epsilon_ = epsilon.to<MPDType>();
  VLOG(3) << "beta1_pow.numel() : " << beta1_pow.numel()
          << "beta2_pow.numel() : " << beta2_pow.numel();
  VLOG(3) << "param.numel(): " << param.numel();
  PADDLE_ENFORCE_EQ(
      beta1_pow_out->numel(),
      1,
      errors::InvalidArgument("beta1 pow output size should be 1, but received "
                              "value is:%d.",
                              beta1_pow_out->numel()));

  PADDLE_ENFORCE_EQ(
      beta2_pow_out->numel(),
      1,
      errors::InvalidArgument("beta2 pow output size should be 1, but received "
                              "value is:%d.",
                              beta2_pow_out->numel()));

  const MPDType* master_in_data =
      multi_precision ? master_param->data<MPDType>() : nullptr;
  MPDType* master_out_data =
      multi_precision ? dev_ctx.template Alloc<MPDType>(master_param_outs)
                      : nullptr;

  if (grad.rows().size() == 0) {
    VLOG(3) << "grad row size is 0!!";
    return;
  }

  std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
  bool is_strict_sorted = true;
  for (size_t i = 1; i < cpu_rows.size(); ++i) {
    if (cpu_rows[i - 1] >= cpu_rows[i]) {
      is_strict_sorted = false;
      break;
    }
  }

  phi::SelectedRows tmp_grad_merge;
  const phi::SelectedRows* grad_merge_ptr;
  if (is_strict_sorted) {
    grad_merge_ptr = &grad;
  } else {
    // merge duplicated rows if any.
    // The rows of grad_merge have been sorted inside MergeAdd functor
    paddle::operators::math::scatter::MergeAdd<Context, T> merge_func;
    merge_func(dev_ctx, grad, &tmp_grad_merge, true);
    grad_merge_ptr = &tmp_grad_merge;
  }
  auto& grad_merge = *grad_merge_ptr;
  auto& grad_tensor = grad_merge.value();
  const T* grad_data = grad_tensor.template data<T>();
  auto* grad_merge_rows = &grad_merge.rows();
  paddle::framework::MixVector<int64_t> mixv_grad_merge_rows(grad_merge_rows);
  const int64_t* rows = mixv_grad_merge_rows.Data(dev_ctx.GetPlace());
  auto row_numel = grad_tensor.numel() / grad_merge.rows().size();

  if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
    int threads = 512;
    int ndim = param.numel();
    int blocks = (ndim + threads - 1) / threads;

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    SparseAdamCUDAKernelREG<T, MPDType>
        <<<blocks, threads, 0, dev_ctx.stream()>>>(
            beta1_,
            beta2_,
            epsilon_,
            *beta1_pow.data<MPDType>(),
            *beta2_pow.data<MPDType>(),
            moment1.data<MPDType>(),
            dev_ctx.template Alloc<MPDType>(moment1_out),
            moment2.data<MPDType>(),
            dev_ctx.template Alloc<MPDType>(moment2_out),
            learning_rate.data<MPDType>(),
            grad_data,
            param.data<T>(),
            dev_ctx.template Alloc<T>(param_out),
            master_in_data,
            master_out_data,
            rows,
            row_numel,
            grad_merge.rows().size(),
            lazy_mode,
            ndim);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    if (!use_global_beta_pow) {
      // Update with cpu
      dev_ctx.template HostAlloc<MPDType>(beta1_pow_out)[0] =
          beta1_ * beta1_pow.data<MPDType>()[0];
      dev_ctx.template HostAlloc<MPDType>(beta2_pow_out)[0] =
          beta2_ * beta2_pow.data<MPDType>()[0];
    }
  } else {
    funcs::SparseAdamFunctor<T, funcs::GPUAdam, MPDType> functor(
        beta1_,
        beta2_,
        epsilon_,
        beta1_pow.data<MPDType>(),
        beta2_pow.data<MPDType>(),
        moment1.data<MPDType>(),
        dev_ctx.template Alloc<MPDType>(moment1_out),
        moment2.data<MPDType>(),
        dev_ctx.template Alloc<MPDType>(moment2_out),
        learning_rate.data<MPDType>(),
        grad_data,
        param.data<T>(),
        dev_ctx.template Alloc<T>(param_out),
        master_in_data,
        master_out_data,
        rows,
        row_numel,
        grad_merge.rows().size(),
        lazy_mode);

    // FIXME(minqiyang): remove BinarySearch in GPU later
    funcs::ForRange<Context> for_range(dev_ctx, param.numel());
    for_range(functor);
    if (!use_global_beta_pow) {
      // update beta1 and beta2
      UpdateBetaPow<MPDType><<<1, 32, 0, dev_ctx.stream()>>>(
          beta1_,
          beta2_,
          beta1_pow.data<MPDType>(),
          beta2_pow.data<MPDType>(),
          dev_ctx.template Alloc<MPDType>(beta1_pow_out),
          dev_ctx.template Alloc<MPDType>(beta2_pow_out));
    }
  }
}

}  // namespace sr
}  // namespace phi

PD_REGISTER_KERNEL(adam_dense_param_sparse_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::sr::AdamDenseParamSparseGradKernel,
                   float,
                   double,
287 288 289 290 291 292
                   phi::dtype::float16) {
  // Skip beta1_pow, beta2_pow, skip_update data transform
  kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(6).SetBackend(phi::Backend::ALL_BACKEND);
  kernel->InputAt(8).SetBackend(phi::Backend::ALL_BACKEND);
}