the_one_ps.py 55.7 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
Z
ziyoujiyi 已提交
21
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
22 23 24 25 26
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
27 28
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
29
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
30 31 32
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format

Z
ziyoujiyi 已提交
33 34 35 36
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
37 38


W
wangguanqun 已提交
39 40 41 42
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
43 44
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
45 46 47


def parse_table_class(varname, program_id, context):
48
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
49
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
50 51 52 53 54 55 56 57 58 59 60 61
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
62
def check_embedding_dim(accessor_proto, varname, program_id, context):
63
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
64
    embedding_dim = 0
W
wangguanqun 已提交
65
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
66 67
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
68 69
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
70
            break
71

Z
ziyoujiyi 已提交
72
    fea_dim = accessor_proto.fea_dim
73 74 75 76 77 78 79 80 81 82 83
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}".
                format(embedding_dim + 2, fea_dim))
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}".
                format(embedding_dim, fea_dim))

Z
ziyoujiyi 已提交
84
    embedx_dim = accessor_proto.embedx_dim
85 86 87 88 89 90 91 92 93 94
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}".
                format(embedding_dim - 1, embedx_dim))
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}".
                format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
95 96


Z
ziyoujiyi 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110
class Service:
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
    def __init__(self):
111
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
112 113 114 115 116 117

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
118 119 120 121
class Accessor:
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
122 123
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
124

Z
ziyoujiyi 已提交
125 126
    # TableAccessorParameter accessor
    def _set(self, accessor_proto, varname, program_id, context):
127 128
        main_program, startup_program, idx = get_program_by_id(context,
                                                               program_id)
Z
ziyoujiyi 已提交
129 130 131 132 133
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
134

Z
ziyoujiyi 已提交
135
        if not accessor_proto.HasField("accessor_class"):
136
            # DownpourSparseValueAccessor
137 138 139 140
            if context['use_ps_gpu']:
                accessor_proto.accessor_class = "CtrCommonAccessor"
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
141
        if not accessor_proto.HasField("fea_dim"):
142 143 144 145
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
146
        if not accessor_proto.HasField("embedx_dim"):
147 148 149 150
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

        ctr_accessor_param = accessor_proto.ctr_accessor_param
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
                sgd_param.name = "SparseAdaGradSGDRule"
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
                    sgd_param.naive.learning_rate = 0.05
                if not sgd_param.naive.HasField("initial_range"):
                    sgd_param.naive.initial_range = 0.0001
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
            if sgd_param.name == "SparseAdamSGDRule":
                if not sgd_param.adam.HasField("learning_rate"):
                    sgd_param.adam.learning_rate = 0.001
                if not sgd_param.adam.HasField("initial_range"):
                    sgd_param.adam.initial_range = 0.0001
                if not sgd_param.adam.HasField("beta1_decay_rate"):
                    sgd_param.adam.beta1_decay_rate = 0.9
                if not sgd_param.adam.HasField("beta2_decay_rate"):
                    sgd_param.adam.beta2_decay_rate = 0.999
                if not sgd_param.adam.HasField("ada_epsilon"):
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
Z
ziyoujiyi 已提交
211
    def __init__(self):
Z
ziyoujiyi 已提交
212 213 214
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
215 216 217 218
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
219
        self.sync = False
Z
ziyoujiyi 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
        opt_input_map["adam_d2sum"] = [
            ("Param", None), ("D2Sum", None), ("G2Sum", None), ("Moment", None),
            ("MomentDecayRate", 1), ("AdaDecayRate", 1), ("AdaEpsilon", 1),
            ("LearningRate", 1)
        ]
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
240
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
241 242 243 244 245 246 247 248 249

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
W
wangguanqun 已提交
250
        opt_attr_map["summary"] = []
Z
ziyoujiyi 已提交
251 252 253 254 255 256 257 258 259 260 261

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
262
    def parse_entry(self, varname, program_id, context):
263 264
        main_program, startup_program, idx = get_program_by_id(context,
                                                               program_id)
W
wangguanqun 已提交
265
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
295
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
296 297 298 299
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
300
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
301
                for attr in self.opt_init_map[op.type]:
302
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
303
                    init_attr.append(str(op.attr(attr)))
304
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
305 306 307 308
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
309 310 311 312 313 314
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
315 316
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
317

318 319
        main_program, startup_program, idx = get_program_by_id(context,
                                                               ctx.program_id())
Z
ziyoujiyi 已提交
320 321 322
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
323 324
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
                    op.input("Param")[0] ==
                    context['grad_name_to_param_name'][grad_name]):
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
343 344
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
358 359 360 361 362
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
377
                        shape = single_dim
Z
ziyoujiyi 已提交
378
                    else:
W
wangguanqun 已提交
379
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
380 381 382 383 384 385 386
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
387 388
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
389 390
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
391
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
392 393 394 395 396 397 398 399 400 401 402 403

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                elif formal_name == "SummaryDecayRate":
421
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
422 423 424
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
425 426 427 428 429 430 431 432
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
433 434
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
435 436
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
437
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
438 439 440

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
441
                            shape = single_dim
Z
ziyoujiyi 已提交
442
                        else:
W
wangguanqun 已提交
443
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                                                   pserver_id)
                    dims.append(shape)

                    initializer = self.get_initializer_attr(param.name,
                                                            startup_program)
                    initializers.append(initializer)

        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
            attrs.append("&".join([attr_varname, type_, str(value)]))

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
460 461 462 463 464 465 466 467 468 469 470 471
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
Z
ziyoujiyi 已提交
472 473 474


class Tensor:
Z
ziyoujiyi 已提交
475 476 477 478 479 480 481 482 483 484 485 486
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
        tensor_proto.main_program_id = self.tensor_dict.get("main_program_id",
                                                            0)
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
487 488 489 490 491 492 493


class Table:
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
494 495 496
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
497 498
        self.tensor = None

Z
ziyoujiyi 已提交
499 500
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
501 502


Z
ziyoujiyi 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
class BarrierTable(Table):
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
521
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
536 537


Z
ziyoujiyi 已提交
538 539 540 541 542 543
class TensorTable(Table):
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
544

Z
ziyoujiyi 已提交
545 546
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
547
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
548
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
549

Z
ziyoujiyi 已提交
550
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
551

Z
ziyoujiyi 已提交
552 553 554
        table_proto.common.table_name = self.tensor_dict.get("feed_var_name",
                                                             '')
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
555

Z
ziyoujiyi 已提交
556 557
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
558 559


Z
ziyoujiyi 已提交
560 561 562 563 564 565 566 567
class SparseTable(Table):
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
568

Z
ziyoujiyi 已提交
569 570 571 572 573 574 575
    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == False):
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
576
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        table_proto.shard_num = self.shard_num

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
        table_proto.table_class = 'MemorySparseTable'
        warnings.warn("The PS mode must use MemorySparseTable.")
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
            table_proto.shard_num = 1000
            warnings.warn(
                "The shard_num of sparse table is not set, use default value 1000."
            )
Z
ziyoujiyi 已提交
599

Z
ziyoujiyi 已提交
600 601 602
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
603

Z
ziyoujiyi 已提交
604 605 606 607
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
                           ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
608

Z
ziyoujiyi 已提交
609 610
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
611

Z
ziyoujiyi 已提交
612 613 614 615
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = True if self.context['is_sync'] else False
Z
ziyoujiyi 已提交
616

Z
ziyoujiyi 已提交
617
        self.common._set(table_proto.common)
Z
ziyoujiyi 已提交
618 619


Z
ziyoujiyi 已提交
620 621 622
class GeoSparseTable(SparseTable):
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
623
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
624 625 626 627 628 629 630 631 632 633
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == False):
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
634
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
656

Z
ziyoujiyi 已提交
657 658 659 660 661 662 663 664
    def _set(self, table_proto):
        ctx = self.ctx
        if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1 or (
                ctx.is_sparse() == True):
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
665
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
666
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name,
                                ctx.program_id(), self.context)
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
Z
ziyoujiyi 已提交
683
    def __init__(self):
Z
ziyoujiyi 已提交
684
        pass
Z
ziyoujiyi 已提交
685

Z
ziyoujiyi 已提交
686 687
    def _set(self):
        pass
Z
ziyoujiyi 已提交
688 689


Z
ziyoujiyi 已提交
690 691 692 693 694 695
class DownpourServer(Server):
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
696 697 698 699


class Worker:
    def __init__(self):
Z
ziyoujiyi 已提交
700
        pass
Z
ziyoujiyi 已提交
701

Z
ziyoujiyi 已提交
702 703
    def _set(self):
        pass
Z
ziyoujiyi 已提交
704 705


Z
ziyoujiyi 已提交
706 707 708 709 710 711
class DownpourWorker(Worker):
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
712 713 714


class fsClient:
Z
ziyoujiyi 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
734
        self.barrier_table_id = None
Z
ziyoujiyi 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747
        self.send_ctx = get_the_one_send_context(
            self.context,
            use_origin_program=True,
            split_dense_table=self.is_heter_ps_mode)

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
748
        self.ps_desc = the_one_ps_pb2.PSParameter()
Z
ziyoujiyi 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
                    tables.append(globals()['GeoSparseTable'](self.context,
                                                              ctx))
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
780
        else:
Z
ziyoujiyi 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
794 795
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
796 797 798 799 800
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
801
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
802 803 804 805
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
Z
ziyoujiyi 已提交
806
            if table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
Z
ziyoujiyi 已提交
807 808 809 810 811 812 813
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
814 815 816 817 818 819 820 821 822 823


class TheOnePSRuntime(RuntimeBase):
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
        self._server_sub_program = []
        self._heter_client = None
824
        self._send_ctx = None
Z
ziyoujiyi 已提交
825 826 827 828

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
W
wangguanqun 已提交
829

Z
ziyoujiyi 已提交
830
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
831 832 833 834 835
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
836 837 838 839 840 841
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
        self.context['trainer'] = TrainerRuntimeConfig(context[
            'valid_strategy'])
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
842 843
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
844
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
845 846
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
847 848
        self.context['tensor_table'] = {}
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
849

850
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
851
        self.string_hosts = []
852
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
853 854 855 856 857 858
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

        self.ps_desc_builder = PsDescBuilder(self.context)

859
    def _init_all_params(self, scopes, send_ctx, recv_map):
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", idx, table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull all dense:", idx, table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)

881 882 883 884 885 886 887 888 889 890 891
    def _init_params(self, program, scope, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)

892 893 894 895 896 897 898 899 900 901 902 903
    def _pull_dense(self, program, scope, send_ctx, recv_map):
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
904
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
            main_program._fleet_opt[
                "worker_places"] = [int(s) for s in gpus_env.split(",")]

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
928
            ep_list=self.endpoints)
929
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
930 931
        trainer_config = self.context['trainer']

W
wangguanqun 已提交
932
        proto_txt = worker_desc
Z
ziyoujiyi 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946
        debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        if debug:
            print("worker: \n{}".format(proto_txt))
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

947
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
948 949 950 951 952

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
953
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
954

955 956 957 958 959 960 961 962 963 964
        role_id = get_role_id(self.role_maker)
        self._worker.init_worker(proto_txt, self.string_hosts, role_id)

        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
            self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt,
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
965
        fleet.util.barrier()
966 967 968

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
969 970 971 972 973 974
        if isinstance(info, list) and len(info) > 0:
            all_info = self.role_maker._all_gather(info[0])
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
975 976 977 978 979

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
980 981 982 983 984 985 986 987
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

988
        # for GEO
Z
ziyoujiyi 已提交
989 990 991 992 993 994 995
        if self.role_maker._is_first_worker() and self.is_heter_ps_mode:
            # for ps-heter mode load all parameters on first_worker
            init_params = get_the_one_recv_context(
                self.context, split_dense_table=True, use_origin_program=True)
        else:
            init_params = dense_map

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        # if not is_test:
        #     self._communicator.init_params(init_params)
        #     fleet.util.barrier()
        # self._communicator.pull_dense(init_params)
        # fleet.util.barrier()

        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1012
        if not is_test:
1013 1014 1015 1016
            if self.context['ps_mode'] == DistributedMode.GEO:
                self._communicator.init_params(init_params)
            else:
                if role_id == 0:
1017
                    self._init_all_params(scopes, send_ctx, dense_map)
1018

Z
ziyoujiyi 已提交
1019
            fleet.util.barrier()
1020

1021
        self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1022 1023
        fleet.util.barrier()

1024 1025 1026 1027 1028
        if self.context['ps_mode'] == DistributedMode.GEO:
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
                self._heter_client = HeterClient(next_trainers,
                                                 previous_trainers,
                                                 self.role_maker._role_id())

    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1050
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1051 1052 1053 1054 1055
        role_id = get_role_id(self.role_maker)
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

W
wangguanqun 已提交
1056 1057 1058 1059
        # debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
        # if debug:
        #     print("server: \n{}".format(server_desc))

Z
ziyoujiyi 已提交
1060
        self._server = fluid.core.DistFleetWrapper()
Z
ziyoujiyi 已提交
1061 1062
        self._server.init_server(server_desc, self.string_hosts, role_id,
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1063

W
wangguanqun 已提交
1064 1065 1066
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
                        "fleet.init server can only load sparse variables in {}".
                        format(distributed_varnames))
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1083
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1098 1099 1100
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1111
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1112 1113 1114 1115
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1116
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1127 1128 1129 1130 1131 1132 1133
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

Z
ziyoujiyi 已提交
1134 1135
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1136 1137
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1138
        values = []
W
wangguanqun 已提交
1139
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1140 1141 1142 1143
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1144
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
                                       main_program,
                                       mode=0):

        denses = get_the_one_recv_context(
            self.context,
            is_dense=True,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
Z
ziyoujiyi 已提交
1167
            split_dense_table=self.is_heter_ps_mode,
Z
ziyoujiyi 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
            use_origin_program=True)

        sparse_varnames = self._save_sparse_params(executor, dirname, sparses,
                                                   main_program, mode)

        recv_dense_varnames = []
        for id, names in denses.items():
            recv_dense_varnames.extend(names)
        self._communicator.pull_dense(denses)

        saved_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(saved_varnames),
                main_program.list_vars()))

        import paddle
        for var in remaining_vars:
            # if var.name not in recv_dense_varnames:
            #     continue
            tensor = var.get_value()
            paddle.save(
                tensor, os.path.join(dirname, var.name), use_binary_format=True)

    def _ps_inference_save_persistables(self,
                                        executor,
                                        dirname,
                                        main_program=None,
                                        mode=0,
                                        **kwargs):
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1220
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        # Todo(MrChengmo): Save optimizer status
        # self._save_distributed_persistables(executor, dirname, main_program,
        #                                     mode)
        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1255 1256 1257 1258 1259
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1275
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1288 1289 1290
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1291 1292
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1293 1294 1295
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(sparse_names),
                infer_program.list_vars()))

        for var in remaining_vars:
1306
            tensor = var.get_value(scope)
Z
ziyoujiyi 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
            paddle.save(
                tensor,
                os.path.join(model_path, var.name),
                use_binary_format=True)

    def _save_inference_model(self, *args, **kwargs):
        self._ps_inference_save_inference_model(*args, **kwargs)

    def _save_persistables(self, *args, **kwargs):
        self._ps_inference_save_persistables(*args, **kwargs)

    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1319
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1335 1336 1337 1338 1339
        main_program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=True)

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

1355 1356 1357 1358 1359 1360 1361 1362
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            use_origin_program=self.is_heter_ps_mode,
            ep_list=self.endpoints)

Z
ziyoujiyi 已提交
1363
        recv_dense_varnames = []
1364
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
            filter(
                TheOnePSRuntime.__exclude_vars(loaded_varnames),
                main_program.list_vars()))

        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1383
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1384

1385
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

    def _load_distributed_persistables(self, path, mode):
        self._worker.load_model(path, mode)

    def load_model(self, path, mode):
        if mode == 0 or mode == 3:
            self._load_distributed_persistables(path, mode)
        else:
            self._ps_inference_load_inference_model(path, mode)

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1406
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
                _is_heter_parameter_server_mode,
                use_origin_program=True)

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()