calib_compute_test.cc 4.9 KB
Newer Older
S
Shixiaowei02 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/calib_compute.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include <random>
#include <utility>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

static int get_rand(int start, int end) {
  int i = rand();  // NOLINT
  i = (i % (end - start)) + start;
  return i;
}

static void int8_to_fp32_basic(const int8_t* din, float* dout,
                               const float* scale, int axis_size,
                               int64_t outer_size, int64_t inner_size) {
  int loop_size = axis_size * outer_size;
  for (int i = 0; i < loop_size; ++i) {
    float scale_in = scale[i % axis_size];
    for (int j = 0; j < inner_size; ++j) {
      dout[j] = din[j] * scale_in;
    }
    dout += inner_size;
    din += inner_size;
  }
}

static void fp32_to_int8_basic(const float* din, int8_t* dout,
                               const float* scale, int axis_size,
                               int64_t outer_size, int64_t inner_size) {
  int loop_size = axis_size * outer_size;
  for (int i = 0; i < loop_size; ++i) {
    float inv_scale = 1.f / scale[i % axis_size];
    for (int j = 0; j < inner_size; ++j) {
      dout[j] = static_cast<int8_t>(roundf(din[j] * inv_scale));
    }
    dout += inner_size;
    din += inner_size;
  }
}

void calib_ref(const operators::CalibParam& param) {
  std::vector<float> scale = {param.in_scale};
  if (param.in_dtype == PRECISION(kFloat) &&
      param.out_dtype == PRECISION(kInt8)) {
    const auto* din = param.input->data<float>();
    auto* dout = param.output->mutable_data<signed char>();
    fp32_to_int8_basic(din, dout, scale.data(), 1, 1, param.input->numel());
    return;
  }
  if (param.in_dtype == PRECISION(kInt8) &&
      param.out_dtype == PRECISION(kFloat)) {
    const auto* din = param.input->data<signed char>();
    auto* dout = param.output->mutable_data<float>();
    int8_to_fp32_basic(din, dout, scale.data(), 1, 1, param.input->numel());
    return;
  }
  LOG(FATAL) << "Unsupport Dtype.";
}

TEST(calib_arm, retrive_op) {
  auto calib =
      KernelRegistry::Global()
S
Shixiaowei02 已提交
87
          .Create<TARGET(kARM), PRECISION(kInt8), DATALAYOUT(kNCHW)>("calib");
S
Shixiaowei02 已提交
88 89 90 91 92 93
  ASSERT_FALSE(calib.empty());
  ASSERT_TRUE(calib.front());
}

TEST(calib_arm, init) {
  CalibCompute calib;
S
Shixiaowei02 已提交
94
  ASSERT_EQ(calib.precision(), PRECISION(kInt8));
S
Shixiaowei02 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  ASSERT_EQ(calib.target(), TARGET(kARM));
}

TEST(calib_arm, int8_to_fp32) {
  DeviceInfo::Init();
  for (auto n : {1, 2}) {
    for (auto c : {6, 32 /*, 128*/}) {
      for (auto h : {9, 18 /*, 56 , 112, 224, 512*/}) {
        for (auto w : {9, 18 /*, 56, 112, 224, 512*/}) {
          Tensor x;
          Tensor output;
          Tensor output_ref;
          // set the dims of input, output, ref output tensors
          x.Resize({n, c, h, w});
          output.Resize({n, c, h, w});
          output_ref.Resize({n, c, h, w});
          // initialize the data of input tensors
          auto* x_data = x.mutable_data<char>();
          auto* output_data = output.mutable_data<float>();
          for (int i = 0; i < x.dims().production(); i++) {
            float sign = i % 3 == 0 ? -1.0f : 1.0f;
            x_data[i] = sign * static_cast<float>(i % 128) * 0.013f;
          }
          // prepare kernel params and run
          CalibCompute calib;
          std::unique_ptr<KernelContext> ctx(new KernelContext);
          ctx->As<ARMContext>();
          calib.SetContext(std::move(ctx));
          operators::CalibParam param;
          param.in_scale = get_rand(0, 100) * 0.1f;
          param.in_dtype = PRECISION(kInt8);
          param.out_dtype = PRECISION(kFloat);
          param.input = &x;
          param.output = &output;
          calib.SetParam(param);
          calib.Launch();
          // invoking ref implementation and compare results
          param.output = &output_ref;
          calib_ref(param);
          auto* output_ref_data = output_ref.mutable_data<float>();
          for (int i = 0; i < output.dims().production(); i++) {
            EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5);
          }
        }
      }
    }
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

S
Shixiaowei02 已提交
149
USE_LITE_KERNEL(calib, kARM, kInt8, kNCHW, def);