psroi_pool_op.cu 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/psroi_pool_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaximumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaximumNumBlocks);
}

template <typename T>
__global__ void GPUPSROIPoolForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int input_channels, const int height,
    const int width, const int output_channels, const int pooled_height,
    const int pooled_width, const int* rois_batch_id_data, T* output_data) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (size_t i = index; i < nthreads; i += offset) {
    // The output is in order (n, c, ph, pw)
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % output_channels;
    int n = i / pooled_width / pooled_height / output_channels;

    // set roi_batch_id
    int roi_batch_id = rois_batch_id_data[n];

    // [start, end) interval for spatial sampling
    const T* offset_input_rois = input_rois + n * 4;
    T roi_start_w = static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
    T roi_start_h = static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
    T roi_end_w =
        static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
    T roi_end_h =
        static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;

    // Force too small ROIs to be 1x1
    T roi_height = max(roi_end_h - roi_start_h, (T)0.1);  // avoid 0
    T roi_width = max(roi_end_w - roi_start_w, (T)0.1);

    // Compute w and h at input feature map
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    int hstart = floor(bin_size_h * static_cast<T>(ph) + roi_start_h);
    int wstart = floor(bin_size_w * static_cast<T>(pw) + roi_start_w);
    int hend = ceil(bin_size_h * static_cast<T>(ph + 1) + roi_start_h);
    int wend = ceil(bin_size_w * static_cast<T>(pw + 1) + roi_start_w);

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart, 0), height);
    hend = min(max(hend, 0), height);
    wstart = min(max(wstart, 0), width);
    wend = min(max(wend, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    int input_channel = (c * pooled_height + ph) * pooled_width + pw;
    const T* offset_input_data =
        input_data +
        (roi_batch_id * input_channels + input_channel) * height * width;
    T outsum = 0;

    for (int ih = hstart; ih < hend; ++ih) {
      for (int iw = wstart; iw < wend; ++iw) {
        int input_index = ih * width + iw;
        outsum += offset_input_data[input_index];
      }
    }

    T bin_area = static_cast<T>((hend - hstart) * (wend - wstart));
    output_data[i] = is_empty ? 0. : outsum / bin_area;
  }
}

template <typename T>
__global__ void GPUPSROIPoolBackward(
    const int nthreads, const T* input_rois, const T* output_grad_data,
    const float spatial_scale, const int input_channels, const int height,
    const int width, const int output_channels, const int pooled_height,
    const int pooled_width, const int* rois_batch_id_data, T* input_grad_data) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    // The output is in order (n, c, ph, pw)
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % output_channels;
    int n = i / pooled_width / pooled_height / output_channels;

    // set roi_batch_id
    int roi_batch_id = rois_batch_id_data[n];
    int input_channel = (c * pooled_height + ph) * pooled_width + pw;
    int input_offset =
        (roi_batch_id * input_channels + input_channel) * height * width;
    T* offset_input_grad_data = input_grad_data + input_offset;

    // [start, end) interval for spatial sampling
    const T* offset_input_rois = input_rois + n * 4;
    T roi_start_w = static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
    T roi_start_h = static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
    T roi_end_w =
        static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
    T roi_end_h =
        static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;

    // Force too small ROIs to be 1x1
    T roi_height = max(roi_end_h - roi_start_h, (T)0.1);  // avoid 0
    T roi_width = max(roi_end_w - roi_start_w, (T)0.1);

    // Compute w and h at input feature map
    T bin_size_h = roi_height / static_cast<T>(pooled_height);
    T bin_size_w = roi_width / static_cast<T>(pooled_width);

    int hstart = floor(bin_size_h * static_cast<T>(ph) + roi_start_h);
    int wstart = floor(bin_size_w * static_cast<T>(pw) + roi_start_w);
    int hend = ceil(bin_size_h * static_cast<T>(ph + 1) + roi_start_h);
    int wend = ceil(bin_size_w * static_cast<T>(pw + 1) + roi_start_w);

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart, 0), height);
    hend = min(max(hend, 0), height);
    wstart = min(max(wstart, 0), width);
    wend = min(max(wend, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    // Accumulate diff_val into input data
    T bin_area = static_cast<T>((hend - hstart) * (wend - wstart));
    T diff_val = is_empty ? 0. : output_grad_data[i] / bin_area;
    for (int ih = hstart; ih < hend; ++ih) {
      for (int iw = wstart; iw < wend; ++iw) {
        int input_index = ih * width + iw;
        platform::CudaAtomicAdd(offset_input_grad_data + input_index, diff_val);
      }
    }
  }
}

template <typename Place, typename T>
class GPUPSROIPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto output_channels = ctx.Attr<int>("output_channels");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int input_channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

179 180 181 182 183 184
    PADDLE_ENFORCE_EQ(
        input_channels, output_channels * pooled_height * pooled_width,
        platform::errors::InvalidArgument(
            "The channels %d of input X should equal the product of "
            "output_channels %d x pooled_height %d x pooled_width %d.",
            input_channels, output_channels, pooled_height, pooled_width));
185 186 187

    int rois_num = rois->dims()[0];
    if (rois_num == 0) return;
188
    int rois_batch_size;
189 190 191 192
    framework::Tensor rois_batch_id_list;
    rois_batch_id_list.Resize({rois_num});
    int* rois_batch_id_data =
        rois_batch_id_list.mutable_data<int>(platform::CPUPlace());
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      rois_batch_size = rois_num_t->numel();
      auto* rois_num_data = rois_num_t->data<int>();
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
              "The batch size of input(ROIs) and input(X) must be "
              "the same but received batch size of input(ROIs) and "
              "input(X) is %d and %d respectively.",
              rois_batch_size, batch_size));
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(platform::CPUPlace(), rois_num_list.data(),
                   BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()),
                   rois_num_data, sizeof(int) * rois_batch_size, 0);
      int rois_num_count = 0;
      for (int i = 0; i < rois_batch_size; ++i) {
        rois_num_count += rois_num_list[i];
      }
      PADDLE_ENFORCE_EQ(
          rois_num_count, rois_num,
          platform::errors::InvalidArgument(
              "the rois_num from input and RoisNum must be the same"));
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_list[n]; ++i) {
          rois_batch_id_data[i] = n;
        }
        start += rois_num_list[n];
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
              "The batch size of input(ROIs) and input(X) must be "
              "the same but received batch size of input(ROIs) and "
              "input(X) is %d and %d respectively.",
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
      PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
                        platform::errors::InvalidArgument(
                            "The number of rois from input(ROIs) and its LOD "
                            "must be the same. Received rois %d of input(ROIs) "
                            "but the number of rois %d from its LOD is %d",
                            rois_num, rois_num_with_lod));

      // set rois batch id
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          rois_batch_id_data[i] = n;
        }
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      }
    }
    framework::Tensor rois_batch_id_list_gpu;
    framework::TensorCopy(rois_batch_id_list, ctx.GetPlace(),
                          ctx.device_context(), &rois_batch_id_list_gpu);

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    // call cuda kernel function
    GPUPSROIPoolForward<
        T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
        output_size, in->data<T>(), rois->data<T>(), spatial_scale,
        input_channels, height, width, output_channels, pooled_height,
        pooled_width, rois_batch_id_list_gpu.data<int>(),
        out->mutable_data<T>(ctx.GetPlace()));
  }
};

template <typename Place, typename T>
class GPUPSROIPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto output_channels = ctx.Attr<int>("output_channels");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    int rois_num = rois->dims()[0];
    int input_channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

    if (input_grad) {
      // set roi batch id
      framework::Tensor rois_batch_id_list;
      rois_batch_id_list.Resize({rois_num});
      int* rois_batch_id_data =
          rois_batch_id_list.mutable_data<int>(platform::CPUPlace());
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
      int rois_batch_size;
      if (ctx.HasInput("RoisNum")) {
        auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
        rois_batch_size = rois_num_t->numel();
        std::vector<int> rois_num_list(rois_batch_size);
        memory::Copy(platform::CPUPlace(), rois_num_list.data(),
                     BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace()),
                     rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
        int start = 0;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (int i = start; i < start + rois_num_list[n]; ++i) {
            rois_batch_id_data[i] = n;
          }
          start += rois_num_list[n];
        }
      } else {
        auto rois_lod = rois->lod().back();
        rois_batch_size = rois_lod.size() - 1;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            rois_batch_id_data[i] = n;
          }
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        }
      }
      framework::Tensor rois_batch_id_list_gpu;
      framework::TensorCopy(rois_batch_id_list, ctx.GetPlace(),
                            ctx.device_context(), &rois_batch_id_list_gpu);

      input_grad->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<Place, T> set_zero;
      set_zero(ctx.cuda_device_context(), input_grad, static_cast<T>(0));

      int output_grad_size = output_grad->numel();
      int blocks = NumBlocks(output_grad_size);
      int threads = kNumCUDAThreads;

      if (output_grad_size > 0) {
        GPUPSROIPoolBackward<
            T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
            output_grad_size, rois->data<T>(), output_grad->data<T>(),
            spatial_scale, input_channels, height, width, output_channels,
            pooled_height, pooled_width, rois_batch_id_list_gpu.data<int>(),
            input_grad->mutable_data<T>(ctx.GetPlace()));
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    psroi_pool,
    ops::GPUPSROIPoolOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUPSROIPoolOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    psroi_pool_grad,
    ops::GPUPSROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUPSROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, double>);