sgd_op.h 12.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/selected_rows_utils.h"
20
#include "paddle/fluid/framework/var_type_traits.h"
21
#include "paddle/fluid/operators/jit/kernels.h"
22
#include "paddle/fluid/platform/bfloat16.h"
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
namespace detail {

template <typename T, int VariableTypeId>
struct sgd_dense_param_kernel {
  void operator()() const {}
};

// LodTensor
template <typename T>
struct sgd_dense_param_kernel<
    T, framework::VarTypeTrait<framework::LoDTensor>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<T, LoDTensor>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    const auto *param = ctx.Input<framework::Tensor>("Param");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::Tensor>("Grad");

    const auto sz = param_out->numel();
    jit::sgd_attr_t attr(1, sz, 1, sz, 1);
    const T *lr = learning_rate->data<T>();
    const T *param_data = param->data<T>();
    const T *grad_data = grad->data<T>();
    int64_t rows_idx = 0;
    T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

    auto sgd =
        jit::KernelFuncs<jit::SgdTuple<T>, platform::CPUPlace>::Cache().At(
            attr);
    sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
  }
};

// SelectedRows
template <typename T>
struct sgd_dense_param_kernel<
    T, framework::VarTypeTrait<framework::SelectedRows>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<T, SelectedRows>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    const auto *param = ctx.Input<framework::Tensor>("Param");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::SelectedRows>("Grad");

    const auto &grad_value = grad->value();
    const auto &grad_rows = grad->rows();
    const T *param_data = param->data<T>();
    const T *grad_data = grad_value.data<T>();
    const T *lr = learning_rate->data<T>();
    const int64_t *rows_data = grad_rows.data();
    T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

    jit::sgd_attr_t attr;
    attr.param_height = param_out->dims()[0];
    attr.param_width = param_out->numel() / attr.param_height;
    attr.grad_height = grad_rows.size();  // note: it is not grad->height()
    attr.grad_width = grad_value.numel() / attr.grad_height;
    attr.selected_rows_size = grad_rows.size();

    auto sgd =
        jit::KernelFuncs<jit::SgdTuple<T>, platform::CPUPlace>::Cache().At(
            attr);
    sgd(lr, param_data, grad_data, rows_data, out_data, &attr);
  }
};

// LodTensor
template <>
struct sgd_dense_param_kernel<
    platform::bfloat16, framework::VarTypeTrait<framework::LoDTensor>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<bfloat16, LoDTensor>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    const auto *param = ctx.Input<framework::Tensor>("Param");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::Tensor>("Grad");
    param_out->mutable_data<platform::bfloat16>(ctx.GetPlace());

    auto p = framework::EigenVector<platform::bfloat16>::Flatten(*param);
    auto g = framework::EigenVector<platform::bfloat16>::Flatten(*grad);
    auto o = framework::EigenVector<platform::bfloat16>::Flatten(*param_out);
    const auto *lr = learning_rate->data<platform::bfloat16>();

    o = p - lr[0] * g;
  }
};

// SelectedRows
template <>
struct sgd_dense_param_kernel<
    platform::bfloat16, framework::VarTypeTrait<framework::SelectedRows>::kId> {
  void operator()(const framework::ExecutionContext &ctx) const {
    VLOG(4) << "[CPU]: sgd_dense_param_kernel<bfloat16, SelectedRows>";
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad = ctx.Input<framework::SelectedRows>("Grad");

    const auto &grad_value = grad->value();
    const auto &grad_rows = grad->rows();
    const auto grad_height = grad->height();
    const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size());
    const auto grad_width = grad_value.numel() / grad_val_height;

    const auto *grad_data = grad_value.data<platform::bfloat16>();
    auto *out_data = param_out->data<platform::bfloat16>();
    const auto *lr = learning_rate->data<platform::bfloat16>();

    for (size_t i = 0; i < grad_rows.size(); ++i) {
      PADDLE_ENFORCE_LT(
          grad_rows[i], grad_height,
          platform::errors::OutOfRange(
              "Grad rows index value should be less than grad height."
              "Got [%s], but expected less than [%s]",
              grad_rows[i], grad_height));
      const int64_t row = grad_rows[i];
      for (int64_t j = 0; j < grad_width; ++j) {
        out_data[row * grad_width + j] -= lr[0] * grad_data[i * grad_width + j];
      }
    }
  }
};

}  // namespace detail

151
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
152
class SGDOpKernel : public framework::OpKernel<T> {
153 154 155 156 157 158 159
 public:
  void Compute(const framework::ExecutionContext &ctx) const override;
};

template <typename T>
class SGDOpKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
160
 public:
161 162 163 164
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *param_var = ctx.InputVar("Param");

    if (param_var->IsType<framework::LoDTensor>()) {
165
      invoke_dense_param_kernel(ctx);
166
    } else if (param_var->IsType<framework::SelectedRows>()) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
      sparse_param_and_grad_kernel(ctx);
    } else {
      PADDLE_ENFORCE_EQ(
          false, true,
          platform::errors::PermissionDenied(
              "Unsupported Variable Type of Parameter in SgdOp. Excepted "
              "LodTensor or SelectedRows, But received [%s]",
              paddle::framework::ToTypeName(param_var->Type())));
    }
  }

 protected:
  void invoke_dense_param_kernel(const framework::ExecutionContext &ctx) const {
    const auto *param = ctx.Input<framework::Tensor>("Param");
    auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
    const auto *grad_var = ctx.InputVar("Grad");

    if (grad_var->IsType<framework::LoDTensor>()) {
      const auto *grad = ctx.Input<framework::Tensor>("Grad");
      const auto sz = param_out->numel();
      PADDLE_ENFORCE_EQ(param->numel(), sz,
C
Chengmo 已提交
188
                        platform::errors::InvalidArgument(
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
                            "The input tensor Param's numel of SgdOp "
                            "should be equal with ParamOut's numel. "
                            "But received Param's "
                            "numel = [%s], ParamOut's numel = [%s]",
                            param->numel(), sz));
      PADDLE_ENFORCE_EQ(grad->numel(), sz,
                        platform::errors::InvalidArgument(
                            "The input tensor Grad's numel of SgdOp "
                            "should be equal with ParamOut's numel. "
                            "But received Grad's "
                            "numel = [%s], ParamOut's numel = [%s]",
                            grad->numel(), sz));

      dense_param_and_grad_kernel(ctx);
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      // TODO(qijun): In Sparse SGD operator, in-place update is enforced.
      // This manual optimization brings difficulty to track data dependency.
      // It's better to find a more elegant solution.
      PADDLE_ENFORCE_EQ(param, param_out,
                        platform::errors::InvalidArgument(
                            "The input tensor Param of SgdOp "
                            "should be equal with ParamOut if variable's "
                            "type is SelectedRows. "));
      const auto *grad = ctx.Input<framework::SelectedRows>("Grad");
C
chengduoZH 已提交
213

214 215
      // for distributed training, a sparse var may be empty,
      // just skip updating.
216
      if (grad->rows().size() == 0) {
217 218 219
        return;
      }

220
      auto out_dims = param_out->dims();
C
Chengmo 已提交
221
      PADDLE_ENFORCE_EQ(
222
          grad->height(), out_dims[0],
C
Chengmo 已提交
223
          platform::errors::InvalidArgument(
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
              "The input tensor Grad's height of SgdOp "
              "should be equal with ParamOut's dims. But received  Grad's "
              "height [%s] and ParamOut's dims [%s]",
              grad->height(), out_dims[0]));

      auto &grad_value = grad->value();
      auto &grad_rows = grad->rows();
      const auto param_height = param_out->dims()[0];
      const auto param_width = param_out->numel() / param_height;
      // note: it is not grad->height()
      const auto grad_height = static_cast<int64_t>(grad_rows.size());
      const auto grad_width = grad_value.numel() / grad_height;

      PADDLE_ENFORCE_EQ(
          grad_width, param_width,
          platform::errors::InvalidArgument(
              "The grad_value's numel of SgdOp "
              "should be equal with param_out's numel. But received "
              "grad_value's numel [%s] and param_out's numel [%s]",
              grad_width, param_width));

      dense_param_sparse_grad_kernel(ctx);
Q
qijun 已提交
246
    } else {
C
Chengmo 已提交
247 248 249
      PADDLE_ENFORCE_EQ(
          false, true,
          platform::errors::PermissionDenied(
250
              "Unsupported Variable Type of Grad in SgdOp. Excepted "
C
Chengmo 已提交
251
              "LodTensor or SelectedRows, But received [%s]",
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
              paddle::framework::ToTypeName(grad_var->Type())));
    }
  }

  void sparse_param_and_grad_kernel(
      const framework::ExecutionContext &ctx) const {
    const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
    const auto *param_var = ctx.InputVar("Param");
    const auto *grad_var = ctx.InputVar("Grad");

    PADDLE_ENFORCE_EQ(grad_var->IsType<framework::SelectedRows>(), true,
                      platform::errors::InvalidArgument(
                          "When param is SelectedRows, gradient should also "
                          "be SelectedRows"));
    const auto &param = param_var->Get<framework::SelectedRows>();
    auto *param_out = ctx.Output<framework::SelectedRows>("ParamOut");
    const auto &grad = grad_var->Get<framework::SelectedRows>();

    // for distributed training, a sparse var may be empty,
    // just skip updating.
    if (grad.rows().size() == 0) {
      return;
Q
qijun 已提交
274
    }
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    auto param_row_width = param.value().dims()[1];
    auto grad_row_width = grad.value().dims()[1];
    PADDLE_ENFORCE_EQ(
        param_row_width, grad_row_width,
        platform::errors::InvalidArgument(
            "The param_row in SgdOP should have the same size with grad_row. "
            "But received param_row's width is [%s], and grad_row's width is "
            "[%s]",
            param_row_width, grad_row_width));

    const auto *lr = learning_rate->data<T>();
    const auto *grad_data = grad.value().data<T>();
    auto *out_data = param_out->mutable_value()->data<T>();
    for (size_t i = 0; i < grad.rows().size(); i++) {
      int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
      PADDLE_ENFORCE_GE(
          id_index, static_cast<int64_t>(0),
          platform::errors::InvalidArgument(
              "The id in SgdOp should be >= 0. But recevied id_index is [%s]",
              id_index));
      for (int64_t j = 0; j < grad_row_width; j++) {
        out_data[id_index * grad_row_width + j] -=
            lr[0] * grad_data[i * grad_row_width + j];
      }
    }
  }

  virtual void dense_param_and_grad_kernel(
      const framework::ExecutionContext &ctx) const {
    detail::sgd_dense_param_kernel<
        T, framework::VarTypeTrait<framework::LoDTensor>::kId>()(ctx);
  }

  virtual void dense_param_sparse_grad_kernel(
      const framework::ExecutionContext &ctx) const {
    detail::sgd_dense_param_kernel<
        T, framework::VarTypeTrait<framework::SelectedRows>::kId>()(ctx);
Q
Qiao Longfei 已提交
313 314
  }
};
315

Q
Qiao Longfei 已提交
316 317
}  // namespace operators
}  // namespace paddle