merge_lod_tensor_op.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
W
wanghuancoder 已提交
16

17 18 19 20
namespace pten {
class DenseTensor;
}  // namespace pten

W
wanghuancoder 已提交
21 22 23 24 25 26 27 28 29 30
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
class Scope;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle
31 32 33 34 35 36 37 38 39 40 41 42 43

namespace paddle {
namespace operators {

using LoD = framework::LoD;

class MergeLoDTensorOp : public framework::OperatorBase {
 public:
  MergeLoDTensorOp(const std::string &type,
                   const framework::VariableNameMap &inputs,
                   const framework::VariableNameMap &outputs,
                   const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
44

45 46 47
 protected:
  void RunBase(const framework::Scope &scope,
               const platform::Place &dev_place) const {
D
dzhwinter 已提交
48
    // get device context from pool
Y
Yu Yang 已提交
49 50
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
51

52 53 54 55 56 57 58 59 60
    auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
    auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
    auto &in_true = scope.FindVar(Input("InTrue"))->Get<framework::LoDTensor>();
    auto &in_false =
        scope.FindVar(Input("InFalse"))->Get<framework::LoDTensor>();
    auto *out =
        scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
    auto level = static_cast<size_t>(Attr<int>("level"));

61 62 63 64
    PADDLE_ENFORCE_EQ(
        in_true.numel() || in_false.numel(), true,
        platform::errors::InvalidArgument(
            "Input(InTrue) or Input(InFalse) should be initialized."));
65

66
    auto &mask_dim = mask.dims();
67 68 69 70
    std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
    if (platform::is_cpu_place(mask.place())) {
      cpu_mask->ShareDataWith(mask);
    } else if (platform::is_gpu_place(mask.place())) {
71
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
72 73
      framework::TensorCopy(mask, platform::CPUPlace(), dev_ctx,
                            cpu_mask.get());
74
#else
75 76 77
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Not supported GPU, Please recompile or reinstall paddle with CUDA "
          "support."));
78 79 80 81
#endif
    }
    auto *mask_data = cpu_mask->data<bool>();

82
    platform::Place place = dev_place;
83
    int64_t batch_size = in_true.dims()[0] + in_false.dims()[0];
Y
Yu Yang 已提交
84
    auto data_type = in_true.IsInitialized() ? in_true.type() : in_false.type();
85 86 87 88 89 90 91 92 93 94 95 96
    int rank;
    framework::DDim in_dims;
    if (in_true.IsInitialized()) {
      rank = in_true.dims().size();
      in_dims = framework::slice_ddim(in_true.dims(), 1, rank);
    } else {
      rank = in_false.dims().size();
      in_dims = framework::slice_ddim(in_false.dims(), 1, rank);
    }

    auto in_dim_vec = framework::vectorize(in_dims);
    in_dim_vec.insert(in_dim_vec.begin(), batch_size);
97

98
    framework::DDim out_dims = framework::make_ddim(in_dim_vec);
99
    out->Resize(out_dims);
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    out->mutable_data(place, data_type);

    auto *out_lod = out->mutable_lod();
    out_lod->clear();
    size_t out_offset = 0;

    // Build LoDTensor `out`

    size_t in_true_idx = 0;
    size_t in_false_idx = 0;
    for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
      const framework::LoDTensor *input = nullptr;
      size_t *in_idx = nullptr;
      if (static_cast<int>(mask_data[i]) == 0) {
        input = &in_false;
        in_idx = &in_false_idx;
      } else {
        input = &in_true;
        in_idx = &in_true_idx;
      }
      auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
          input->lod(), *in_idx, (*in_idx) + 1, 0);
      auto &lod_length = lod_and_offset.first;

      framework::AppendLoD(out_lod, lod_length);

      size_t start_offset = lod_and_offset.second.first;
      size_t end_offset = lod_and_offset.second.second;

130 131 132 133 134
      PADDLE_ENFORCE_GE(end_offset, start_offset,
                        platform::errors::InvalidArgument(
                            "The end offset less than start offset, end offset "
                            "is %d, start offset is %d.",
                            end_offset, start_offset));
135 136 137 138
      size_t len = end_offset - start_offset;
      if (len == 0) {
        continue;
      }
D
dzhwinter 已提交
139
      auto slice = out->Slice(out_offset, out_offset + len);
Y
Yi Wang 已提交
140 141
      framework::TensorCopy(input->Slice(start_offset, end_offset), place,
                            dev_ctx, &slice);
142 143 144 145 146 147 148 149
      out_offset += len;
      (*in_idx) += 1;
    }

    for (size_t i = 0; i < level; i++) {
      out_lod->insert(out_lod->begin(), x.lod()[i]);
    }
  }
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
    RunBase(scope, dev_place);
  }
};

class MergeLoDTensorInferOp : public MergeLoDTensorOp {
 public:
  MergeLoDTensorInferOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
      : MergeLoDTensorOp(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
    RunBase(scope, dev_place);
    framework::Variable *in_true_var = scope.FindVar(Input("InTrue"));
    framework::Variable *in_false_var = scope.FindVar(Input("InFalse"));
    in_true_var->Clear();
    in_false_var->Clear();
    in_true_var->GetMutable<framework::LoDTensor>();
    in_false_var->GetMutable<framework::LoDTensor>();
  }
177 178 179 180
};

class MergeLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
181
  void Make() override {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    AddInput("X",
             "The input LoDTensor, contains complete lod information to "
             "construct the output");
    AddInput("Mask", "A bool column vector which mask the input");
    AddInput("InTrue", "The True branch to be merged");
    AddInput("InFalse", "The False branch to be merged");
    AddOutput("Out", "The merged output LoDTensor");
    AddAttr<int>("level", "(int) the specific lod level to rank.")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddComment(
        R"DOC(
        Merge True and False branches of LoDTensor into a single Output,
        with a mask at certain lod level. X is used to obtain complete
        lod information. Please refer to SplitLoDTensorOp.)DOC");
  }
};

class MergeLoDTensorInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
203 204 205 206 207 208 209 210 211
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasInput("Mask"), "Input", "Mask",
                   "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasInput("InTrue"), "Input", "InTrue",
                   "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasInput("InFalse"), "Input", "InFalse",
                   "merge_lod_tensor");
    OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out",
                   "merge_lod_tensor");
212
    auto mask_dim = context->GetInputDim("Mask");
Z
Zhaolong Xing 已提交
213
    PADDLE_ENFORCE_EQ(mask_dim.size(), 2,
214 215 216 217 218 219 220 221
                      platform::errors::InvalidArgument(
                          "If you are using IfElse OP:"
                          "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
                          "ie.true_block():\n    out_1 = ie.input(x)\n\n"
                          "Please ensure that the cond is a 2-D tensor and "
                          "the second dim size of cond is 1. "
                          "But now the cond's shape is [%s].\n",
                          mask_dim));
222
    if (context->IsRuntime() || mask_dim[1] > 0) {
Z
Zhaolong Xing 已提交
223
      PADDLE_ENFORCE_EQ(mask_dim[1], 1,
224 225 226 227 228 229 230 231
                        platform::errors::InvalidArgument(
                            "If you are using IfElse OP:"
                            "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
                            "ie.true_block():\n    out_1 = ie.input(x)\n\n"
                            "Please ensure that the cond is a 2-D tensor "
                            "and the second dim size of cond is 1. "
                            "But now the cond's shape is [%s].\n",
                            mask_dim));
232
    }
233 234 235 236 237

    context->SetOutputDim("Out", context->GetInputDim("InTrue"));
  }
};

H
hong 已提交
238 239
template <typename T>
class MergeLoDTensorGradMaker : public framework::SingleGradOpMaker<T> {
240
 public:
H
hong 已提交
241
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
242 243

 protected:
244
  void Apply(GradOpPtr<T> grad_op) const override {
245
    grad_op->SetType("split_lod_tensor");
H
hong 已提交
246 247 248 249 250
    grad_op->SetInput("X", this->OutputGrad("Out"));
    grad_op->SetInput("Mask", this->Input("Mask"));
    grad_op->SetOutput("OutTrue", this->InputGrad("InTrue"));
    grad_op->SetOutput("OutFalse", this->InputGrad("InFalse"));
    grad_op->SetAttrMap(this->Attrs());
251 252 253 254 255 256 257 258
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(merge_lod_tensor, ops::MergeLoDTensorOp,
259 260
                  ops::MergeLoDTensorOpProtoMaker,
                  ops::MergeLoDTensorInferShape,
H
hong 已提交
261 262 263 264 265 266 267
                  ops::MergeLoDTensorGradMaker<paddle::framework::OpDesc>,
                  ops::MergeLoDTensorGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    merge_lod_tensor_infer, ops::MergeLoDTensorInferOp,
    ops::MergeLoDTensorOpProtoMaker, ops::MergeLoDTensorInferShape,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);