prim_base.py 11.7 KB
Newer Older
X
xiaoguoguo626807 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# prim api list
white_ops_list = [
    "pow",
    "scale",
    "multiply",
    "unsqueeze",
    "expand",
    "full",
    "reshape",
    "divide",
    "sum",
    "exp",
]

inplace_out_type_map = {
    "Tensor": "Tensor&",
    "std::vector<Tensor>": "std::vector<Tensor>&",
}

inplace_optional_out_type_map = {
    "Tensor": "paddle::optional<Tensor>&",
    "std::vector<Tensor>": "paddle::optional<std::vector<Tensor>>&",
}


class BaseAPI:
    def __init__(self, api_item_yaml):
        # self.api = api_item_yaml['op']
        self.api = api_item_yaml['name']

        self.is_prim_api = False
        if api_item_yaml['name'] in white_ops_list:
            self.is_prim_api = True

        #######################################
        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
        #     out_size_expr : [], expression for getting size of vector<Tensor>
        ########################################
        if self.is_prim_api:
            (
                self.inputs,
                self.attrs,
                self.outputs,
                self.optional_vars,
            ) = self.parse_args(self.api, api_item_yaml)

            self.inplace_map = api_item_yaml['inplace']

    def get_api_func_name(self):
        return self.api

    # def is_inplace(self):
    #     if self.inplace_map
    #         return True
    #     return False

    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
            "const paddle::optional<Tensor>&": "paddle::optional<Tensor>&",
            "const std::vector<Tensor>&": "std::vector<Tensor>&",
            "const paddle::optional<std::vector<Tensor>>&": "paddle::optional<std::vector<Tensor>>&",
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
                input_args.append(
                    inplace_type_map[self.inputs['input_info'][name]]
                    + ' '
                    + name
                )
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(
                self.attrs['attr_info'][name][0] + ' ' + name + default_value
            )

        return ", ".join(declare_args)

    def get_declare_args_nodefault(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(declare_args)

    def get_return_type(self, inplace_flag=False):
        out_type_list = []
        for i, out_type in enumerate(self.outputs['types']):
            out_name = self.outputs['names'][i].split('@')[0]
            if inplace_flag and out_name in self.inplace_map:
                if self.inplace_map[out_name] in self.optional_vars:
                    out_type_list.append(
                        inplace_optional_out_type_map[out_type]
                    )
                else:
                    out_type_list.append(inplace_out_type_map[out_type])
            else:
                out_type_list.append(out_type)
        if len(out_type_list) == 1:
            return out_type_list[0]
        else:
            return "std::tuple<" + ", ".join(out_type_list) + ">"

    def parse_args(self, api_name, api_item_yaml):
        optional_vars = []
        for input_dict in api_item_yaml['inputs']:
            if input_dict['optional']:
                optional_vars.append(input_dict['name'])

        inputs, attrs = self.parse_input_and_attr(
            api_item_yaml['inputs'], api_item_yaml['attrs']
        )

        output_type_list, output_names, out_size_expr = self.parse_output(
            api_item_yaml['outputs']
        )
        return (
            inputs,
            attrs,
            {
                'names': output_names,
                'types': output_type_list,
                'out_size_expr': out_size_expr,
            },
            optional_vars,
        )

    def parse_input_and_attr(self, inputs_list, attrs_list):
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&',
        }
        attr_types_map = {
            'IntArray': 'const IntArray&',
            'Scalar': 'const Scalar&',
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
            'Scalar[]': 'const std::vector<phi::Scalar>&',
            'int': 'int',
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
            'float[]': 'const std::vector<float>&',
            'double': 'double',
            'bool': 'bool',
            'bool[]': 'const std::vector<bool>&',
            'str': 'const std::string&',
            'str[]': 'const std::vector<std::string>&',
            'Place': 'const Place&',
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&',
        }
        optional_types_trans = {
            'Tensor': 'const paddle::optional<Tensor>&',
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
            'Place': 'paddle::optional<const Place&>',
            'DataLayout': 'paddle::optional<DataLayout>',
            'DataType': 'paddle::optional<DataType>',
        }

        inputs = {'names': [], 'input_info': {}}
        for input_dict in inputs_list:
            inputs['names'].append(input_dict['name'])
            if input_dict['optional']:
                inputs['input_info'][input_dict['name']] = optional_types_trans[
                    input_dict['typename']
                ]
            else:
                inputs['input_info'][input_dict['name']] = input_types_map[
                    input_dict['typename']
                ]

        attrs = {'names': [], 'attr_info': {}}
        for attr_dict in attrs_list:
            attrs['names'].append(attr_dict['name'])
            if 'default_value' in attr_dict.keys():
                default_value = attr_dict['default_value']
            else:
                default_value = None

            if 'optional' in attr_dict.keys():
                attrs['attr_info'][attr_dict['name']] = (
                    optional_types_trans[attr_dict['typename']],
                    default_value,
                )
            else:
                attrs['attr_info'][attr_dict['name']] = (
                    attr_types_map[attr_dict['typename']],
                    default_value,
                )
        return inputs, attrs

    def parse_output(self, outputs_list):

        out_type_list = []
        out_name_list = []
        out_size_expr_list = []
        for output_dict in outputs_list:
            if output_dict['intermediate']:
                continue
            out_type_list.append(output_dict['typename'])
            out_name_list.append(output_dict['name'])
            if 'size' in output_dict.keys():
                out_size_expr_list.append(output_dict['size'])
            else:
                out_size_expr_list.append(None)
        return out_type_list, out_name_list, out_size_expr_list


class EagerPrimAPI(BaseAPI):
    def __init__(self, api_item_yaml):
        super().__init__(api_item_yaml)

    def get_api__func_name(self):
        api_func_name = self.api
        # if self.is_inplace:
        #     if api_func_name[-1] != '_':
        #         api_func_name += '_'
        # print("after api name", api_func_name)
        return api_func_name

    def gene_prim_api_declaration(self):
        api_declaration = ""
        api_func_name = self.get_api__func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
template <typename T>
{self.get_return_type()} {api_func_name}({self.get_declare_args()});
"""
        else:
            api_declaration = (
                api_declaration
                + f"""
template <typename T>
{self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
"""
            )

        return api_declaration

    def get_ad_func_input_args(self, inplace_flag=False):
        input_args = []
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
                input_args.append(name)
            else:
                input_args.append(name)
        return input_args

    def get_ad_func_args(self, inplace_flag=False):
        ad_func_args = self.get_ad_func_input_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            ad_func_args.append(name)

        ad_func_args_str = ", ".join(ad_func_args)
        return ad_func_args_str

    def gene_ad_func_call(self):
        api_func_name = self.get_api__func_name()

        dygraph_ad_func_name = '::' + api_func_name + '_ad_func'
        dygraph_ad_func_parameters = self.get_ad_func_args()

        ad_func_call_str = f"""
VLOG(4) << "Eager Prim API {api_func_name}_ad_func call";
return {dygraph_ad_func_name}({dygraph_ad_func_parameters});
"""
        # print("ad_func_call_str: ", ad_func_call_str)
        return ad_func_call_str

    def gene_eager_prim_api_code(self):
        api_code = ""
        indent = "  "
        api_func_name = self.get_api__func_name()
        template = '<Tensor>'
        # func decalaration
        if api_func_name[-1] != '_':
            api_code = f"""
template <>
{self.get_return_type()} {api_func_name}{template}({self.get_declare_args_nodefault()})
"""
        else:
            api_code = f"""
template <>
{self.get_return_type(inplace_flag=True)} {api_func_name}{template}({self.get_declare_args_nodefault(inplace_flag=True)})
"""
        # func code

        api_code = api_code + '{'
        api_code += f"""{self.gene_ad_func_call()}"""
        api_code += '}' + '\n'

        return api_code