Regularizer.h 4.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "ParameterUpdaterBase.h"

namespace paddle {

// Regularizer function for parameter, e.g. L1/L2
class Regularizer {
public:
24 25
  virtual void update(const VectorPtr vecs[],
                      const ParameterConfig& paraConfig,
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36
                      real learningRate,  // learningrate from optimizer
                      int t0,             // last occurence time
                      int t) const = 0;   // current time
  virtual ~Regularizer() {}

  static Regularizer* get(const std::vector<ParameterType>& types,
                          const ParameterConfig& paraConfig);
};

// L1 Regularizer, |w|_1
class L1Regularizer : public Regularizer {
37 38 39 40 41
  virtual void update(const VectorPtr vecs[],
                      const ParameterConfig& paraConfig,
                      real learningRate,
                      int t0,
                      int t) const {
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48
    vecs[PARAMETER_VALUE]->applyL1(learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate_l1() * (t - t0));
  }
};

// L1 Lr Regularizer
class L1LrRegularizer : public Regularizer {
49 50 51 52 53
  virtual void update(const VectorPtr vecs[],
                      const ParameterConfig& paraConfig,
                      real learningRate,
                      int t0,
                      int t) const {
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60 61
    vecs[PARAMETER_VALUE]->applyL1(*vecs[PARAMETER_LEARNING_RATE],
                                   learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate_l1() * (t - t0));
  }
};

// L2 Regularizer, |w|_2^2
class L2Regularizer : public Regularizer {
62 63 64 65 66
  virtual void update(const VectorPtr vecs[],
                      const ParameterConfig& paraConfig,
                      real learningRate,
                      int t0,
                      int t) const {
Z
zhangjinchao01 已提交
67 68 69 70 71 72 73
    vecs[PARAMETER_VALUE]->applyL2(learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate() * (t - t0));
  }
};

// L2 Lr Regularizer
class L2LrRegularizer : public Regularizer {
74 75 76 77 78
  virtual void update(const VectorPtr vecs[],
                      const ParameterConfig& paraConfig,
                      real learningRate,
                      int t0,
                      int t) const {
Z
zhangjinchao01 已提交
79 80 81 82 83 84 85 86
    vecs[PARAMETER_VALUE]->applyL2(*vecs[PARAMETER_LEARNING_RATE],
                                   learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate() * (t - t0));
  }
};

// L1 + L2 Regularizer, |w|_1 + |w|_2^2
class L1L2Regularizer : public Regularizer {
87 88 89 90 91
  virtual void update(const VectorPtr vecs[],
                      const ParameterConfig& paraConfig,
                      real learningRate,
                      int t0,
                      int t) const {
Z
zhangjinchao01 已提交
92 93 94 95 96 97 98 99 100
    vecs[PARAMETER_VALUE]->applyL1(learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate_l1() * (t - t0));
    vecs[PARAMETER_VALUE]->applyL2(learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate() * (t - t0));
  }
};

// L1 + L2 Lr Regularizer
class L1L2LrRegularizer : public Regularizer {
101 102 103 104 105
  virtual void update(const VectorPtr vecs[],
                      const ParameterConfig& paraConfig,
                      real learningRate,
                      int t0,
                      int t) const {
Z
zhangjinchao01 已提交
106 107 108 109 110 111 112 113 114 115
    vecs[PARAMETER_VALUE]->applyL1(*vecs[PARAMETER_LEARNING_RATE],
                                   learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate_l1() * (t - t0));
    vecs[PARAMETER_VALUE]->applyL2(*vecs[PARAMETER_LEARNING_RATE],
                                   learningRate * paraConfig.learning_rate(),
                                   paraConfig.decay_rate() * (t - t0));
  }
};

}  // namespace paddle