softmax_cudnn_op.cu.h 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/amp/fp16_type_traits.h"
18
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
19
#include "paddle/fluid/operators/softmax_op.h"
20 21
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

namespace paddle {
namespace operators {

using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using Tensor = framework::Tensor;

// Vectorization trait 4 * sizeof(T)
template <typename T>
class VecT4 {};
template <>
class VecT4<double> {
 public:
  using Type = long4;
};
template <>
class VecT4<float> {
 public:
  using Type = int4;
};
template <>
class VecT4<platform::float16> {
 public:
  using Type = int2;
};

// Vectorization trait 2 * sizeof(T)
template <typename T>
class VecT2 {};
template <>
class VecT2<double> {
 public:
  using Type = int4;
};
template <>
class VecT2<float> {
 public:
  using Type = int2;
};
template <>
class VecT2<platform::float16> {
 public:
  using Type = int;
};

static inline int log2_ceil(int value) {
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceSum(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
      T sum_val = platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceMax(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
      T max_val = platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
      sum[i] = max(sum[i], max_val);
    }
  }
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
namespace kps = paddle::operators::kernel_primitives;

template <typename Tx, typename Ty = Tx>
struct ReduceMaxFunctor {
  inline Ty initial() { return -std::numeric_limits<Ty>::infinity(); }

  __device__ __forceinline__ Ty operator()(const Ty& a, const Ty& b) const {
    return max(a, b);
  }
};

template <typename Tx, typename Ty = Tx>
struct ExpSubFunctor {
  HOSTDEVICE inline ExpSubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline ExpSubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x - y));
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct ExpMulFunctor {
  HOSTDEVICE inline ExpMulFunctor() { y = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline ExpMulFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x) * y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnarySubFunctor {
  HOSTDEVICE inline UnarySubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline UnarySubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnaryLogFunctor {
  HOSTDEVICE inline UnaryLogFunctor() {}

  HOSTDEVICE explicit inline UnaryLogFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::log(x));
  }
};

template <typename Tx, typename Ty>
struct DataTransFunctor {
  HOSTDEVICE inline DataTransFunctor() {}

  HOSTDEVICE explicit inline DataTransFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return x == -std::numeric_limits<Tx>::infinity()
               ? -std::numeric_limits<Ty>::infinity()
               : static_cast<Ty>(x);
  }
};

template <typename Tx, typename Ty = Tx>
struct UnaryDivFunctor {
  HOSTDEVICE inline UnaryDivFunctor() { n_inv = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline UnaryDivFunctor(Tx n) : n_inv((Tx)(1.0 / n)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x * n_inv);
  }

 private:
  Tx n_inv;
};

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/*
Core function of computing softmax forward for axis=-1.
The computation includes
  - Compute maximum of batch: maxvalue_{i} = max_j src_{i,j}
  - Compute sum of exp batch: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  - Compute: (a_{i,j} - maxvalue_{i}) / s_{i}
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
template <typename T, typename VecT, typename AccT, int Log2Elements,
          bool LogMode = false>
__global__ void WarpSoftmaxForward(T* softmax, const T* src,
                                   const int batch_size, const int stride,
                                   const int element_count) {
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
207 208
  constexpr int kLoops = kDimCeil / kWarpSize;
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
209 210
  constexpr int kBatchSize = (kDimCeil <= 32) ? 2 : 1;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
211 212 213 214
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
  constexpr AccT kLowInf = -std::numeric_limits<AccT>::infinity();
  using kMode = kps::details::ReduceMode;
215 216 217 218 219 220 221 222 223

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
  }

F
Feng Xing 已提交
224
  // data src
225 226
  AccT srcdata[kBatchSize][kLoopsV][kVSize];
  T src_tmp[kBatchSize][kLoopsV][kVSize];
F
Feng Xing 已提交
227
  kps::Init<AccT, kStep>(&srcdata[0][0][0], kLowInf);
228
  kps::Init<T, kStep>(&src_tmp[0][0][0], -std::numeric_limits<T>::infinity());
F
Feng Xing 已提交
229 230 231 232 233 234 235 236 237 238 239 240

  // data dst
  T out_tmp[kBatchSize][kLoopsV][kVSize];

  // max value
  AccT max[kBatchSize];
  kps::Init<AccT, kBatchSize>(&max[0], kLowInf);

  // sum value
  AccT sum[kBatchSize] = {0};

// read data from global memory
241 242
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
243 244
    const VecT* src_v =
        reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
245 246 247 248 249
    VecT* reg_v = reinterpret_cast<VecT*>(&src_tmp[i][0][0]);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &reg_v[0], &src_v[0], idx_max_v[i], 0, kWarpSize, 1);
    kps::ElementwiseUnary<T, AccT, kVItem, 1, 1, DataTransFunctor<T, AccT>>(
        &srcdata[i][0][0], &src_tmp[i][0][0], DataTransFunctor<T, AccT>());
250 251
  }

252 253 254 255 256
  // compute max
  kps::Reduce<AccT, kVItem, kBatchSize, 1, ReduceMaxFunctor<AccT>,
              kMode::kLocalMode>(&max[0], &srcdata[0][0][0],
                                 ReduceMaxFunctor<AccT>(), true);
  WarpReduceMax<AccT, kBatchSize, kWarpSize>(max);
257 258 259

  // compute sum
  for (int i = 0; i < kBatchSize; ++i) {
260 261
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, 1, ExpSubFunctor<AccT>>(
        &srcdata[i][0][0], &srcdata[i][0][0], ExpSubFunctor<AccT>(max[i]));
262
  }
263 264 265
  kps::Reduce<AccT, kVItem, kBatchSize, 1, kps::AddFunctor<AccT>,
              kMode::kLocalMode>(&sum[0], &srcdata[0][0][0],
                                 kps::AddFunctor<AccT>(), true);
266 267
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

F
Feng Xing 已提交
268
// write data to global memory
269 270
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
271 272 273
    VecT* softmax_v =
        reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
274 275 276 277
    kps::ElementwiseUnary<AccT, T, kVItem, 1, 1, UnaryDivFunctor<AccT>>(
        &out_tmp[i][0][0], &srcdata[i][0][0], UnaryDivFunctor<AccT>(sum[i]));
    kps::WriteData<VecT, VecT, kLoopsV, 1, 1, true>(
        &softmax_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
  }
}

/*
Core function of computing softmax backward for axis=-1.
The computation includes
  - Compute sum of exp batch: s_{i} = sum_{j} {src_{i,j} * grad_{i,j}
  - Compute src_{i,j} * ( grad_{i,j}) - s_{i} )
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
template <typename T, typename VecT, typename AccT, int Log2Elements,
          bool LogMode = false>
__global__ void WarpSoftmaxBackward(T* dst, const T* grad, const T* src,
                                    int batch_size, int stride,
                                    int element_count) {
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
298
  constexpr int kLoops = kDimCeil / kWarpSize;
299
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;
300
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
301 302
  int element_count_v = element_count / kVSize;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
303 304 305 306 307 308 309 310
  int local_batches = min(batch_size - first_batch, kBatchSize);

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
311 312 313
  }

  // read data from global memory
314 315 316 317 318 319 320 321
  VecT src_reg[kBatchSize][kLoopsV];
  VecT grad_reg[kBatchSize][kLoopsV];
  VecT k_value;
  for (int s = 0; s < kVSize; s++) {
    reinterpret_cast<T*>(&k_value)[s] = 0.0;
  }
  kps::Init<VecT, kBatchSize * kLoopsV>(&src_reg[0][0], k_value);
  kps::Init<VecT, kBatchSize * kLoopsV>(&grad_reg[0][0], k_value);
322
#pragma unroll
323 324 325 326 327 328 329 330 331
  for (int i = 0; i < kBatchSize; ++i) {
    int flag = i < local_batches ? 1 : 0;
    int ptr = (first_batch + i) * stride;
    const VecT* src_v = reinterpret_cast<const VecT*>(&src[ptr]);
    const VecT* grad_v = reinterpret_cast<const VecT*>(&grad[ptr]);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &src_reg[i][0], &src_v[0], idx_max_v[i], 0, kWarpSize, flag);
    kps::ReadData<VecT, VecT, kLoopsV, 1, 1, true>(
        &grad_reg[i][0], &grad_v[0], idx_max_v[i], 0, kWarpSize, flag);
332 333
  }

334 335 336 337 338 339 340 341 342 343 344 345
  // change T to AccT
  AccT src_tmp[kBatchSize][kLoopsV][kVSize];
  AccT grad_tmp[kBatchSize][kLoopsV][kVSize];
  const T* src_ptr = reinterpret_cast<const T*>(&src_reg[0][0]);
  const T* grad_ptr = reinterpret_cast<const T*>(&grad_reg[0][0]);
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
  kps::ElementwiseUnary<T, AccT, kStep, 1, 1, DataTransFunctor<T, AccT>>(
      &src_tmp[0][0][0], &src_ptr[0], DataTransFunctor<T, AccT>());
  kps::ElementwiseUnary<T, AccT, kStep, 1, 1, DataTransFunctor<T, AccT>>(
      &grad_tmp[0][0][0], &grad_ptr[0], DataTransFunctor<T, AccT>());

346 347
  // compute sum
  AccT sum[kBatchSize]{0.0};
348 349 350 351 352 353 354 355
  AccT sum_tmp[kBatchSize][kLoopsV][kVSize];
  AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[0][0][0]);
  AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[0][0][0]);
  kps::ElementwiseBinary<AccT, AccT, kStep, 1, 1, kps::MulFunctor<AccT>>(
      &sum_tmp[0][0][0], &gradptr[0], &srcptr[0], kps::MulFunctor<AccT>());
  kps::Reduce<AccT, kVItem, kBatchSize, 1, kps::AddFunctor<AccT>,
              kps::details::ReduceMode::kLocalMode>(
      &sum[0], &sum_tmp[0][0][0], kps::AddFunctor<AccT>(), true);
356 357
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

358 359 360
  // write result to global memory
  AccT out[kBatchSize][kLoopsV][kVSize];
  T out_tmp[kBatchSize][kLoopsV][kVSize];
361 362 363
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (i >= local_batches) break;
364 365 366 367 368 369
    AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[i][0][0]);
    AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[i][0][0]);
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, 1, UnarySubFunctor<AccT>>(
        &out[i][0][0], &gradptr[0], UnarySubFunctor<AccT>(sum[i]));
    kps::ElementwiseBinary<AccT, T, kVItem, 1, 1, kps::MulFunctor<AccT>>(
        &out_tmp[i][0][0], &srcptr[0], &out[i][0][0], kps::MulFunctor<AccT>());
370
    VecT* dst_v = reinterpret_cast<VecT*>(&dst[(first_batch + i) * stride]);
371 372 373
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
    kps::WriteData<VecT, VecT, kLoopsV, 1, 1, true>(
        &dst_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
  }
}

#define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, AccT)                      \
  case Log2Elements:                                                       \
    WarpSoftmaxForward<T, VecT, AccT, Log2Elements,                        \
                       LogMode><<<blocks, threads, 0, dev_ctx.stream()>>>( \
        dst, src, batch_size, stride, element_count);                      \
    break;

/*
  Wrapper of softmax formward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
void SwitchWarpSoftmaxForward(const int blocks, const dim3 threads,
                              const platform::CUDADeviceContext& dev_ctx,
                              T* dst, const T* src, const int batch_size,
                              const int stride, const int element_count,
                              int Log2Elements) {
  using AccT = typename details::MPTypeTrait<T>::Type;
  switch (Log2Elements) {
    SOFTMAX_WARP_FORWARD_CASE(0, AccT);
    SOFTMAX_WARP_FORWARD_CASE(1, AccT);
    SOFTMAX_WARP_FORWARD_CASE(2, AccT);
    SOFTMAX_WARP_FORWARD_CASE(3, AccT);
    SOFTMAX_WARP_FORWARD_CASE(4, AccT);
    SOFTMAX_WARP_FORWARD_CASE(5, AccT);
    SOFTMAX_WARP_FORWARD_CASE(6, AccT);
    SOFTMAX_WARP_FORWARD_CASE(7, AccT);
    SOFTMAX_WARP_FORWARD_CASE(8, AccT);
    SOFTMAX_WARP_FORWARD_CASE(9, AccT);
    default:
      break;
  }
}

#define SOFTMAX_WARP_BACKWARD_CASE(Log2Elements, AccT)                      \
  case Log2Elements:                                                        \
    WarpSoftmaxBackward<T, VecT, AccT, Log2Elements,                        \
                        LogMode><<<blocks, threads, 0, dev_ctx.stream()>>>( \
        dst, grad, src, batch_size, stride, element_count);                 \
    break;

/*
Wrapper of softmax backward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
void SwitchWarpSoftmaxBackward(const int blocks, const dim3 threads,
                               const platform::CUDADeviceContext& dev_ctx,
                               T* dst, const T* grad, const T* src,
                               const int batch_size, const int stride,
                               const int element_count, int Log2Elements) {
  using AccT = typename details::MPTypeTrait<T>::Type;
  switch (Log2Elements) {
    SOFTMAX_WARP_BACKWARD_CASE(0, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(1, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(2, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(3, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(4, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(5, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(6, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(7, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(8, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(9, AccT);
    default:
      break;
  }
}

#undef SOFTMAX_WARP_FORWARD_CASE
#undef SOFTMAX_WARP_BACKWARD_CASE

template <typename T, bool LogMode = false>
void SoftmaxForwardCUDAKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                                    const Tensor& x, const int input_axis,
                                    Tensor* out) {
  auto* out_data = out->data<T>();

  auto dims = x.dims();
  const int rank = dims.size();
  const int axis = CanonicalAxis(input_axis, rank);
  const int dim = dims[axis];
  const int N = SizeToAxis(axis, dims);
  const int D = SizeOutAxis(axis, dims);

Y
Yanxing Shi 已提交
459
  constexpr int max_dim = 512;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
  constexpr int warps_per_block = 4;

  if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
    const int kDimLog2 = static_cast<int>(log2_ceil(dim));
    const int kDimCeil = 1 << kDimLog2;
    int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
    int batches_per_warp = (kDimCeil <= 32) ? 2 : 1;

    // use 128 threads per block to maximimize gpu utilization
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / kWarpSize);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = (N + batches_per_block - 1) / batches_per_block;
    dim3 threads(kWarpSize, warps_per_block, 1);

    // vectorization read/write
    using T4 = typename VecT4<T>::Type;
    using T2 = typename VecT2<T>::Type;
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    if (dim % 4 == 0) {
      SwitchWarpSoftmaxForward<T, T4, LogMode>(blocks, threads, dev_ctx,
                                               out_data, x.data<T>(), N, dim,
                                               dim, kDimLog2);
    } else if (dim % 2 == 0) {
      SwitchWarpSoftmaxForward<T, T2, LogMode>(blocks, threads, dev_ctx,
                                               out_data, x.data<T>(), N, dim,
                                               dim, kDimLog2);
    } else {
      SwitchWarpSoftmaxForward<T, T, LogMode>(blocks, threads, dev_ctx,
                                              out_data, x.data<T>(), N, dim,
                                              dim, kDimLog2);
    }
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
    DataLayout layout = DataLayout::kNCHW;
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = dev_ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
509
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSoftmaxForward_V2(
510 511 512 513
          handle, platform::CudnnDataType<T>::kOne(), desc_, x.data<T>(),
          platform::CudnnDataType<T>::kZero(), desc_, out_data,
          MIOPEN_SOFTMAX_LOG, mode));
    } else {
514
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSoftmaxForward_V2(
515 516 517 518 519 520 521 522
          handle, platform::CudnnDataType<T>::kOne(), desc_, x.data<T>(),
          platform::CudnnDataType<T>::kZero(), desc_, out_data,
          MIOPEN_SOFTMAX_ACCURATE, mode));
    }
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
523
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSoftmaxForward(
524 525 526 527
          handle, CUDNN_SOFTMAX_LOG, mode, platform::CudnnDataType<T>::kOne(),
          desc_, x.data<T>(), platform::CudnnDataType<T>::kZero(), desc_,
          out_data));
    } else {
528
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSoftmaxForward(
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
          handle, CUDNN_SOFTMAX_ACCURATE, mode,
          platform::CudnnDataType<T>::kOne(), desc_, x.data<T>(),
          platform::CudnnDataType<T>::kZero(), desc_, out_data));
    }
#endif
  }
}

template <typename T, bool LogMode = false>
void SoftmaxBackwardCUDAKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                                     const Tensor& out, const Tensor& dout,
                                     const int input_axis, Tensor* dx) {
  auto* dx_data = dx->data<T>();

  auto dims = out.dims();
  const int rank = dims.size();
  const int axis = CanonicalAxis(input_axis, rank);
  const int dim = dims[axis];
  const int N = SizeToAxis(axis, dims);
  const int D = SizeOutAxis(axis, dims);

Y
Yanxing Shi 已提交
550
  constexpr int max_dim = 512;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
  constexpr int warps_per_block = 4;

  if (D == 1 && dim <= max_dim && sizeof(T) <= 4) {
    const int kDimLog2 = log2_ceil(dim);
    const int kDimCeil = 1 << kDimLog2;
    int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
    int batches_per_warp = (kDimCeil <= 128) ? 2 : 1;
    constexpr int threads_per_block = 128;

    int warps_per_block = (threads_per_block / kWarpSize);
    int batches_per_block = warps_per_block * batches_per_warp;
    int blocks = (N + batches_per_block - 1) / batches_per_block;
    dim3 threads(kWarpSize, warps_per_block, 1);

    // vectorization read/write
    using T4 = typename VecT4<T>::Type;
    using T2 = typename VecT2<T>::Type;
    if (dim % 4 == 0) {
      SwitchWarpSoftmaxBackward<T, T4, LogMode>(
          blocks, threads, dev_ctx, dx_data, dout.data<T>(), out.data<T>(), N,
          dim, dim, kDimLog2);
    } else if (dim % 2 == 0) {
      SwitchWarpSoftmaxBackward<T, T2, LogMode>(
          blocks, threads, dev_ctx, dx_data, dout.data<T>(), out.data<T>(), N,
          dim, dim, kDimLog2);
    } else {
      SwitchWarpSoftmaxBackward<T, T, LogMode>(
          blocks, threads, dev_ctx, dx_data, dout.data<T>(), out.data<T>(), N,
          dim, dim, kDimLog2);
    }
  } else {
    ScopedTensorDescriptor desc;
    std::vector<int> tensor_dims = {N, dim, D, 1};
    DataLayout layout = DataLayout::kNCHW;
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#else
    cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
#endif

    auto handle = dev_ctx.cudnn_handle();

#ifdef PADDLE_WITH_HIP
    auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                                 : MIOPEN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
597
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSoftmaxBackward_V2(
598 599 600 601
          handle, platform::CudnnDataType<T>::kOne(), desc_, out.data<T>(),
          desc_, dout.data<T>(), platform::CudnnDataType<T>::kZero(), desc_,
          dx_data, MIOPEN_SOFTMAX_LOG, mode));
    } else {
602
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSoftmaxBackward_V2(
603 604 605 606 607 608 609 610
          handle, platform::CudnnDataType<T>::kOne(), desc_, out.data<T>(),
          desc_, dout.data<T>(), platform::CudnnDataType<T>::kZero(), desc_,
          dx_data, MIOPEN_SOFTMAX_ACCURATE, mode));
    }
#else
    auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                                 : CUDNN_SOFTMAX_MODE_CHANNEL;
    if (LogMode) {
611
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
612 613 614 615
          handle, CUDNN_SOFTMAX_LOG, mode, platform::CudnnDataType<T>::kOne(),
          desc_, out.data<T>(), desc_, dout.data<T>(),
          platform::CudnnDataType<T>::kZero(), desc_, dx_data));
    } else {
616
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
617 618 619 620 621 622 623 624 625 626
          handle, CUDNN_SOFTMAX_ACCURATE, mode,
          platform::CudnnDataType<T>::kOne(), desc_, out.data<T>(), desc_,
          dout.data<T>(), platform::CudnnDataType<T>::kZero(), desc_, dx_data));
    }
#endif
  }
}

}  // namespace operators
}  // namespace paddle