fake_dequantize_op.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fake_dequantize_op.h"
#include <string>
17
#include <vector>
18 19 20 21

namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
template <typename T>
struct DequantizeFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& dev_ctx,
                  const framework::Tensor* in, const framework::Tensor* scale,
                  T max_range, framework::Tensor* out) {
    auto in_e = framework::EigenVector<T>::Flatten(*in);
    const T* scale_factor = scale->data<T>();
    auto out_e = framework::EigenVector<T>::Flatten(*out);

    auto& dev = *dev_ctx.eigen_device();
    out_e.device(dev) = (scale_factor[0] / max_range) * in_e;
  }
};

template struct DequantizeFunctor<platform::CPUDeviceContext, float>;
template struct DequantizeFunctor<platform::CPUDeviceContext, double>;

39 40
class FakeDequantizeMaxAbsOp : public framework::OperatorWithKernel {
 public:
41 42 43 44
  FakeDequantizeMaxAbsOp(const std::string& type,
                         const framework::VariableNameMap& inputs,
                         const framework::VariableNameMap& outputs,
                         const framework::AttributeMap& attrs)
45 46
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

47
  void InferShape(framework::InferShapeContext* ctx) const override {
48 49 50 51
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of FakeDequantizeMaxAbsOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of FakeDequantizeMaxAbsOp should not be null.");
52 53

    ctx->ShareDim("X", /*->*/ "Out");
54 55 56 57 58 59 60 61 62 63
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class FakeDequantizeMaxAbsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input with float-32/64 type is the "
             "low precision tensor.");
64
    AddInput("Scale", "(float) The scale in quantization stage.");
65 66 67
    AddOutput("Out",
              "(Tensor) The output is the dequantized high "
              "precision tensor.");
68
    AddAttr<float>("max_range", "(float) The max range in quantization stage.");
69 70 71 72 73
    AddComment(R"DOC(
FakeDequantizeMaxAbsOp operator.

This calculation is an opposite operation of FakeQuantizeMaxAbsOp:

74
$$Out = \frac{scale*X}{ max_range }$$
75 76 77 78 79

)DOC");
  }
};

Z
Zhen Wang 已提交
80 81 82 83 84 85 86 87
class FakeChannelWiseDequantizeMaxAbsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(
        ctx->HasInput("X"),
        "Input(X) of FakeChannelWiseDequantizeMaxAbsOp should not be null.");
88 89
    PADDLE_ENFORCE(ctx->HasInputs("Scales"),
                   "Input(Scales) of FakeChannelWiseDequantizeMaxAbsOp "
Z
Zhen Wang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                   "should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of FakeChannelWiseDequantizeMaxAbsOp should not be null.");

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class FakeChannelWiseDequantizeMaxAbsOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input with float-32/64 type is the "
             "low precision tensor.");
107 108 109 110 111 112
    AddInput("Scales",
             "(Tensors) The scales in quantization stage. "
             "Now, `Scales` is a vector with at most two tensors. "
             "If Scales has two elements, the second tensor should only have "
             "one value.")
        .AsDuplicable();
Z
Zhen Wang 已提交
113 114 115
    AddOutput("Out",
              "(Tensor) The output is the dequantized high "
              "precision tensor.");
116 117 118 119 120
    AddAttr<std::vector<int>>(
        "quant_bits",
        "Quantization bit numbers in quantization stage. "
        "The size of `quant_bits` should be equal to the size of `Scales`.")
        .SetDefault({8});
Z
Zhen Wang 已提交
121 122 123 124 125 126

    AddComment(R"DOC(
FakeChannelWiseDequantizeMaxAbsOp operator.

This calculation is an opposite operation of FakeChannelWiseQuantizeMaxAbsOp:

127
$$Out_c = \frac{X_c\prod_{i=1}^{n}Scales_{ic}}{\prod_{i=1}^{n}(2^{quant\_bits_i-1}-1)}$$
Z
Zhen Wang 已提交
128

129 130
In the above formula, the range value of $c$ can be represented as $0 \leq c \lt \ the\ channel\ number\ of\ X$.
Besides, the size of $quant\_bits$ should be equal to the size of $Scales$, and it is called $n$  in the formula.
Z
Zhen Wang 已提交
131

132
Notes: In general, the per-channel quantization is only applied to weights and the activations use per-layer quantization.
Z
Zhen Wang 已提交
133 134 135 136
)DOC");
  }
};

137 138 139 140 141 142 143 144 145 146 147 148
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(fake_dequantize_max_abs, ops::FakeDequantizeMaxAbsOp,
                  ops::FakeDequantizeMaxAbsOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(fake_dequantize_max_abs,
                       ops::FakeDequantizeMaxAbsKernel<CPU, float>,
                       ops::FakeDequantizeMaxAbsKernel<CPU, double>);
Z
Zhen Wang 已提交
149 150 151 152 153 154 155 156

REGISTER_OPERATOR(fake_channel_wise_dequantize_max_abs,
                  ops::FakeChannelWiseDequantizeMaxAbsOp,
                  ops::FakeChannelWiseDequantizeMaxAbsOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(fake_channel_wise_dequantize_max_abs,
                       ops::FakeChannelWiseDequantizeMaxAbsKernel<CPU, float>,
                       ops::FakeChannelWiseDequantizeMaxAbsKernel<CPU, double>);