layer_norm_op.h 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
20 21
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__)
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#endif
Y
Yi Wang 已提交
24
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
25

C
chengduoZH 已提交
26 27 28
namespace paddle {
namespace operators {

X
Xin Pan 已提交
29 30 31 32 33 34 35 36 37 38 39 40
// Wrap RowwiseMean and ColwiseMean.
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
// implementation only considers 2D.
template <typename DeviceContext, typename T>
struct RowwiseMean2D {
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
41
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52
template <typename T>
class RowwiseMean2D<platform::CUDADeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({right_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0 / right);
  }
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
53 54 55
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        false, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
56 57 58 59 60 61 62
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
63
#endif
X
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

template <typename T>
class RowwiseMean2D<platform::CPUDeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    row_mean_(context, input, out);
  }

 private:
  math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
};

template <typename DeviceContext, typename T>
struct ColwiseSum2D {
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
87
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
88 89 90 91 92 93 94 95 96 97 98 99
template <typename T>
class ColwiseSum2D<platform::CUDADeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({left_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0);
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
100 101 102
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        true, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
103 104 105 106 107 108 109
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
110
#endif
X
Xin Pan 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

template <typename T>
class ColwiseSum2D<platform::CPUDeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    col_wise_(context, input, out);
  }

 private:
  math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
};

C
chengduoZH 已提交
126 127 128 129 130 131 132 133 134
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
C
chengduoZH 已提交
135
    return a / (sqrt(b + epsilon_));
C
chengduoZH 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

template <typename T>
struct AddFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
};

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
168 169 170
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
171
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
172
    const float epsilon = ctx.Attr<float>("epsilon");
X
Xin Pan 已提交
173 174
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
175 176
    auto x = *ctx.Input<Tensor>("X");

X
Xin Pan 已提交
177 178 179
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
C
chengduoZH 已提交
180 181
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

C
chengduoZH 已提交
182
    const auto x_dims = x.dims();
C
chengduoZH 已提交
183 184 185 186 187 188 189 190 191 192 193

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
C
chengduoZH 已提交
194 195 196
    Tensor out;
    out.ShareDataWith(*y);
    out.Resize(matrix_shape);
C
chengduoZH 已提交
197

198 199
#if defined(PADDLE_WITH_CUDA) || defined(_WIN32) || defined(__APPLE__) || \
    defined(__OSX__)
X
Xin Pan 已提交
200 201
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
C
chengduoZH 已提交
202

C
chengduoZH 已提交
203
    // get mean
C
chengduoZH 已提交
204 205
    row_mean(dev_ctx, x, mean);

C
chengduoZH 已提交
206
    // get variance
C
chengduoZH 已提交
207
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
208 209
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), &out);
    row_mean(dev_ctx, out, var);
C
chengduoZH 已提交
210

C
chengduoZH 已提交
211
    // get x_norm
C
chengduoZH 已提交
212
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
213
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &out);
C
chengduoZH 已提交
214
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
215 216
        ctx, &out, var, /*axis*/ 0,
        DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &out);
C
chengduoZH 已提交
217 218 219

    if (scale) {
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
220
          ctx, &out, scale, /*axis*/ 1, MulFunctor<T>(), &out);
C
chengduoZH 已提交
221 222 223
    }
    if (bias) {
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
224
          ctx, &out, bias, /*axis*/ 1, AddFunctor<T>(), &out);
C
chengduoZH 已提交
225
    }
226 227 228 229 230 231
#else
    PADDLE_ENFORCE_EQ(mean->numel(), left);
    PADDLE_ENFORCE_EQ(var->numel(), left);
    PADDLE_ENFORCE_EQ(scale->numel(), right);
    PADDLE_ENFORCE_EQ(bias->numel(), right);

232 233 234
    auto ker = jit::KernelFuncs<jit::kLayerNorm, jit::LayerNormTuples<T>,
                                platform::CPUPlace>::Cache()
                   .At(right);
235 236 237
    ker(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
        scale->data<T>(), bias->data<T>(), static_cast<int>(left),
        static_cast<const float>(epsilon), right);
238
#endif
C
chengduoZH 已提交
239
  }
C
chengduoZH 已提交
240 241 242 243 244
};

template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
245
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
246 247
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
X
Xin Pan 已提交
248 249 250 251 252
    auto* y = ctx.Input<Tensor>("Y");
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
253 254 255 256
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
X
Xin Pan 已提交
257 258 259
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
C
chengduoZH 已提交
260

X
Xin Pan 已提交
261
    const auto& x_dims = x.dims();
C
chengduoZH 已提交
262 263 264 265 266 267
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
X
Xin Pan 已提交
268 269 270
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
271 272 273 274 275 276 277

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());

C
chengduoZH 已提交
278 279 280 281 282 283 284 285 286 287 288 289
      if (!(bias && scale)) {
        temp_norm.ShareDataWith(*y);
        temp_norm.Resize(matrix_shape);
      } else {
        temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
        // get x_norm
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
        ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
            ctx, &temp_norm, var, /*axis*/ 0,
            DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
      }
C
chengduoZH 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
306
      auto dx_dim = d_x->dims();
C
chengduoZH 已提交
307 308 309
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

X
Xin Pan 已提交
310 311
      RowwiseMean2D<DeviceContext, T> row_mean(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
312 313 314 315

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
316
            ctx, &d_y, scale, /*axis*/ 1, MulFunctor<T>(), &temp);
Y
Yi Wang 已提交
317
        framework::TensorCopy(temp, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
318 319 320 321 322 323 324 325 326 327 328

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      } else {
        // dy_dx
Y
Yi Wang 已提交
329
        framework::TensorCopy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
343
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp);
C
chengduoZH 已提交
344
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
345
          ctx, d_x, &temp, /*axis*/ 0, SubFunctor<T>(), d_x);
C
chengduoZH 已提交
346 347

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
348
          ctx, d_x, var, /*axis*/ 0,
C
chengduoZH 已提交
349
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
C
chengduoZH 已提交
350
      d_x->Resize(dx_dim);
C
chengduoZH 已提交
351 352
    }
  }
C
chengduoZH 已提交
353 354 355 356
};

}  // namespace operators
}  // namespace paddle