bipartite_match_op.cc 11.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
17 18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class BipartiteMatchOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
29 30
    PADDLE_ENFORCE(ctx->HasInput("DistMat"),
                   "Input(DistMat) of BipartiteMatch should not be null.");
D
dangqingqing 已提交
31 32 33 34 35 36
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchIndices"),
        "Output(ColToRowMatchIndices) of BipartiteMatch should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("ColToRowMatchDist"),
        "Output(ColToRowMatchDist) of BipartiteMatch should not be null.");
37

D
dangqingqing 已提交
38 39
    auto dims = ctx->GetInputDim("DistMat");
    PADDLE_ENFORCE_EQ(dims.size(), 2, "The rank of Input(DistMat) must be 2.");
40 41

    ctx->SetOutputDim("ColToRowMatchIndices", dims);
D
dangqingqing 已提交
42
    ctx->SetOutputDim("ColToRowMatchDist", dims);
43 44 45 46 47
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
48 49
    return framework::OpKernelType(ctx.Input<LoDTensor>("DistMat")->type(),
                                   platform::CPUPlace());
50 51 52
  }
};

53 54 55 56 57 58
template <class T>
bool DistPairDescend(std::tuple<int, int, T> pair1,
                     std::tuple<int, int, T> pair2) {
  return std::get<2>(pair1) > std::get<2>(pair2);
}

59 60 61 62
template <typename T>
class BipartiteMatchKernel : public framework::OpKernel<T> {
 public:
  // The match_indices must be initialized to -1 at first.
63 64 65 66 67 68 69
  // The match_dist must be initialized to 0 at first.
  void BipartiteMatch(const Tensor& dist, int* match_indices,
                      T* match_dist) const {
    PADDLE_ENFORCE_EQ(dist.dims().size(), 2, "The rank of dist must be 2.");
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
70 71 72 73 74 75 76
    // Test result: When row==130 the speed of these two methods almost the same
    if (row >= 130) {
      std::vector<std::tuple<int, int, T>> match_pair;

      for (int64_t i = 0; i < row; ++i) {
        for (int64_t j = 0; j < col; ++j) {
          match_pair.push_back(std::make_tuple(i, j, dist_data[i * col + j]));
77
        }
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
      }
      std::sort(match_pair.begin(), match_pair.end(), DistPairDescend<T>);
      std::vector<int> row_indices(row, -1);

      int64_t idx = 0;
      for (int64_t k = 0; k < row * col; ++k) {
        int64_t i = std::get<0>(match_pair[k]);
        int64_t j = std::get<1>(match_pair[k]);
        T dist = std::get<2>(match_pair[k]);

        if (idx >= row) {
          break;
        }
        if (match_indices[j] == -1 && row_indices[i] == -1 && dist > 0) {
          match_indices[j] = i;
          row_indices[i] = j;
          match_dist[j] = dist;
          idx += 1;
        }
      }
    } else {
      constexpr T kEPS = static_cast<T>(1e-6);
      std::vector<int> row_pool;
      for (int i = 0; i < row; ++i) {
        row_pool.push_back(i);
      }
      while (row_pool.size() > 0) {
        int max_idx = -1;
        int max_row_idx = -1;
        T max_dist = -1;
        for (int64_t j = 0; j < col; ++j) {
          if (match_indices[j] != -1) {
110 111
            continue;
          }
112 113 114 115 116 117 118 119 120 121 122
          for (size_t k = 0; k < row_pool.size(); ++k) {
            int m = row_pool[k];
            // distance is 0 between m-th row and j-th column
            if (dist_data[m * col + j] < kEPS) {
              continue;
            }
            if (dist_data[m * col + j] > max_dist) {
              max_idx = j;
              max_row_idx = m;
              max_dist = dist_data[m * col + j];
            }
123 124
          }
        }
125 126 127 128 129 130 131 132 133 134 135
        if (max_idx == -1) {
          // Cannot find good match.
          break;
        } else {
          PADDLE_ENFORCE_EQ(match_indices[max_idx], -1);
          match_indices[max_idx] = max_row_idx;
          match_dist[max_idx] = max_dist;
          // Erase the row index.
          row_pool.erase(
              std::find(row_pool.begin(), row_pool.end(), max_row_idx));
        }
136 137 138 139
      }
    }
  }

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  void ArgMaxMatch(const Tensor& dist, int* match_indices, T* match_dist,
                   T overlap_threshold) const {
    constexpr T kEPS = static_cast<T>(1e-6);
    int64_t row = dist.dims()[0];
    int64_t col = dist.dims()[1];
    auto* dist_data = dist.data<T>();
    for (int64_t j = 0; j < col; ++j) {
      if (match_indices[j] != -1) {
        // the j-th column has been matched to one entity.
        continue;
      }
      int max_row_idx = -1;
      T max_dist = -1;
      for (int i = 0; i < row; ++i) {
        T dist = dist_data[i * col + j];
        if (dist < kEPS) {
          // distance is 0 between m-th row and j-th column
          continue;
        }
        if (dist >= overlap_threshold && dist > max_dist) {
          max_row_idx = i;
          max_dist = dist;
        }
      }
      if (max_row_idx != -1) {
        PADDLE_ENFORCE_EQ(match_indices[j], -1);
        match_indices[j] = max_row_idx;
        match_dist[j] = max_dist;
      }
    }
  }

172
  void Compute(const framework::ExecutionContext& context) const override {
D
dangqingqing 已提交
173
    auto* dist_mat = context.Input<LoDTensor>("DistMat");
174
    auto* match_indices = context.Output<Tensor>("ColToRowMatchIndices");
D
dangqingqing 已提交
175
    auto* match_dist = context.Output<Tensor>("ColToRowMatchDist");
176 177 178

    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

179
    auto col = dist_mat->dims()[1];
180

181
    int64_t n = dist_mat->lod().size() == 0UL
182
                    ? 1
183 184 185 186 187
                    : static_cast<int64_t>(dist_mat->lod().back().size() - 1);
    if (dist_mat->lod().size()) {
      PADDLE_ENFORCE_EQ(dist_mat->lod().size(), 1UL,
                        "Only support 1 level of LoD.");
    }
188
    match_indices->mutable_data<int>({n, col}, context.GetPlace());
189
    match_dist->mutable_data<T>({n, col}, context.GetPlace());
190 191 192 193

    math::SetConstant<platform::CPUDeviceContext, int> iset;
    iset(dev_ctx, match_indices, static_cast<int>(-1));
    math::SetConstant<platform::CPUDeviceContext, T> tset;
194
    tset(dev_ctx, match_dist, static_cast<T>(0));
195 196

    int* indices = match_indices->data<int>();
197
    T* dist = match_dist->data<T>();
198 199
    auto type = context.Attr<std::string>("match_type");
    auto threshold = context.Attr<float>("dist_threshold");
200
    if (n == 1) {
201
      BipartiteMatch(*dist_mat, indices, dist);
202 203 204
      if (type == "per_prediction") {
        ArgMaxMatch(*dist_mat, indices, dist, threshold);
      }
205
    } else {
206
      auto lod = dist_mat->lod().back();
207
      for (size_t i = 0; i < lod.size() - 1; ++i) {
208 209
        Tensor one_ins = dist_mat->Slice(lod[i], lod[i + 1]);
        BipartiteMatch(one_ins, indices + i * col, dist + i * col);
210 211 212
        if (type == "per_prediction") {
          ArgMaxMatch(one_ins, indices + i * col, dist + i * col, threshold);
        }
213 214 215 216 217 218 219
      }
    }
  }
};

class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
220
  void Make() override {
221
    AddInput(
D
dangqingqing 已提交
222
        "DistMat",
223 224 225 226
        "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
        "[K, M]. It is pair-wise distance matrix between the entities "
        "represented by each row and each column. For example, assumed one "
        "entity is A with shape [K], another entity is B with shape [M]. The "
D
dangqingqing 已提交
227
        "DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
228
        "the distance is, the better macthing the pairs are. Please note, "
229 230 231
        "This tensor can contain LoD information to represent a batch of "
        "inputs. One instance of this batch can contain different numbers of "
        "entities.");
232 233 234 235 236 237 238 239 240 241 242 243 244
    AddAttr<std::string>(
        "match_type",
        "(string, defalut: per_prediction) "
        "The type of matching method, should be 'bipartite' or "
        "'per_prediction', 'bipartite' by defalut.")
        .SetDefault("bipartite")
        .InEnum({"bipartite", "per_prediction"});
    AddAttr<float>(
        "dist_threshold",
        "(float, defalut: 0.5) "
        "If `match_type` is 'per_prediction', this threshold is to determine "
        "the extra matching bboxes based on the maximum distance.")
        .SetDefault(0.5);
245 246 247 248 249
    AddOutput("ColToRowMatchIndices",
              "(Tensor) A 2-D Tensor with shape [N, M] in int type. "
              "N is the batch size. If ColToRowMatchIndices[i][j] is -1, it "
              "means B[j] does not match any entity in i-th instance. "
              "Otherwise, it means B[j] is matched to row "
250 251
              "ColToRowMatchIndices[i][j] in i-th instance. The row number of "
              "i-th instance is saved in ColToRowMatchIndices[i][j].");
D
dangqingqing 已提交
252
    AddOutput("ColToRowMatchDist",
253 254
              "(Tensor) A 2-D Tensor with shape [N, M] in float type. "
              "N is batch size. If ColToRowMatchIndices[i][j] is -1, "
D
dangqingqing 已提交
255
              "ColToRowMatchDist[i][j] is also -1.0. Otherwise, assumed "
256
              "ColToRowMatchIndices[i][j] = d, and the row offsets of each "
257
              "instance are called LoD. Then "
D
dangqingqing 已提交
258
              "ColToRowMatchDist[i][j] = DistMat[d+LoD[i]][j]");
259 260
    AddComment(R"DOC(
This operator is a greedy bipartite matching algorithm, which is used to
261 262 263 264 265
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
266
of columns of the input distance matrix.
267 268

There are two outputs to save matched indices and distance.
269
A simple description, this algorithm matched the best (maximum distance)
270 271 272 273
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.

D
dangqingqing 已提交
274
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(bipartite_match, ops::BipartiteMatchOp,
                  ops::BipartiteMatchOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(bipartite_match, ops::BipartiteMatchKernel<float>,
                       ops::BipartiteMatchKernel<double>);