test_fake_quantize_op.py 7.0 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

视言's avatar
视言 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle.fluid.core as core
视言's avatar
视言 已提交
21 22 23 24


class TestFakeQuantizeOp(OpTest):
    def setUp(self):
25 26 27 28 29 30 31 32 33 34 35 36
        self.op_type = "fake_quantize_abs_max"
        self.attrs = {'bit_length': 8}
        self.inputs = {'X': np.random.random((124, 240)).astype("float32"), }
        scale = np.max(np.abs(self.inputs['X'])).astype("float32")
        self.outputs = {
            'Out': np.round(self.inputs['X'] / scale * (
                (1 << (self.attrs['bit_length'] - 1)) - 1)),
            'OutScale': np.array(scale).astype("float32"),
        }

    def test_check_output(self):
        self.check_output()
Z
Zhen Wang 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


class TestFakeChannelWiseQuantizeOp(OpTest):
    def setUp(self):
        self.op_type = "fake_channel_wise_quantize_abs_max"
        self.attrs = {'bit_length': 8}
        self.inputs = {
            'X': np.random.random((4, 3, 64, 64)).astype("float32"),
        }
        scales = []
        for i in range(self.inputs['X'].shape[0]):
            scales.append(np.max(np.abs(self.inputs['X'][i])).astype("float32"))
        outputs = self.inputs['X'].copy()
        for i, scale in enumerate(scales):
            outputs[i] = np.round(outputs[i] / scale * (
                (1 << (self.attrs['bit_length'] - 1)) - 1))

        self.outputs = {
            'Out': outputs,
56
            'OutScale': np.array(scales).astype("float32"),
Z
Zhen Wang 已提交
57 58 59 60
        }

    def test_check_output(self):
        self.check_output()
61 62


63
class TestFakeQuantizeRangeAbsMaxOp(OpTest):
64 65
    def setUp(self):
        self.op_type = "fake_quantize_range_abs_max"
视言's avatar
视言 已提交
66
        self.attrs = {
67 68 69
            'bit_length': int(5),
            'window_size': int(1),
            'is_test': False
视言's avatar
视言 已提交
70
        }
71 72
        x = (np.random.random((8, 16, 7, 7)) - 0.5) * 10
        x = x.astype("float32")
视言's avatar
视言 已提交
73
        self.inputs = {
74
            'X': x,
75 76
            'Iter': np.zeros(1).astype("int64"),
            'InScale': np.zeros(1).astype("float32")
视言's avatar
视言 已提交
77
        }
78
        scale = np.max(np.abs(self.inputs['X'])).astype("float32")
79

80 81
        out_scales = np.zeros(self.attrs['window_size']).astype("float32")
        out_scales[0] = scale
视言's avatar
视言 已提交
82
        self.outputs = {
83
            'Out': np.round(self.inputs['X'] / scale * (
视言's avatar
视言 已提交
84
                (1 << (self.attrs['bit_length'] - 1)) - 1)),
85 86
            'OutScale': scale,
            'OutScales': out_scales,
视言's avatar
视言 已提交
87 88 89 90 91 92
        }

    def test_check_output(self):
        self.check_output()


Z
Zhen Wang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class TestMovingAverageAbsMaxScaleOp(OpTest):
    def setUp(self):
        self.op_type = "moving_average_abs_max_scale"
        self.attrs = {'moving_rate': float(0.9), 'is_test': False}
        accum = np.zeros(1).astype("float32")
        accum[0] = 1
        state = np.zeros(1).astype("float32")
        state[0] = 1
        self.inputs = {
            'X': np.random.random((8, 16, 7, 7)).astype("float32"),
            'InAccum': accum,
            'InState': state,
        }

        out_accum = np.zeros(1).astype("float32")
        out_state = np.zeros(1).astype("float32")
        out_scale = np.zeros(1).astype("float32")
        out_accum[0] = self.attrs['moving_rate'] * accum[0] + np.max(
            np.abs(self.inputs['X'])).astype("float32")
        out_state[0] = self.attrs['moving_rate'] * state[0] + 1
        out_scale = out_accum / out_state
        self.outputs = {
            'Out': self.inputs['X'],
            'OutAccum': out_accum,
            'OutState': out_state,
            'OutScale': out_scale,
        }

    def test_check_output(self):
        self.check_output()


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
class TestFakeQuantizeRangeAbsMaxOp2(OpTest):
    def setUp(self):
        self.op_type = "fake_quantize_range_abs_max"
        self.attrs = {
            'bit_length': int(8),
            'window_size': int(1),
            'is_test': True
        }
        x = (np.random.random((8, 16, 7, 7)) - 0.5) * 10
        x = x.astype("float32")
        scale = np.max(np.abs(x)).astype("float32") - 1.0
        out_scales = np.zeros(self.attrs['window_size']).astype("float32")
        out_scales[0] = scale

        self.inputs = {
            'X': x,
            'Iter': np.zeros(1).astype("int64"),
            'InScale': scale.astype("float32")
        }
        xs = np.clip(x, -scale, scale)
        qs = np.round(xs / scale * ((1 << (self.attrs['bit_length'] - 1)) - 1))
        self.outputs = {
            'Out': qs,
            'OutScale': scale.astype("float32"),
            'OutScales': out_scales,
        }

    def test_check_output(self):
        self.check_output(no_check_set=set(['OutScale', 'OutScales']))


156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class TestMovingOpBase(OpTest):
    def setUp(self):
        self.init_type()
        self.attrs = {
            'bit_length': int(5),
            'moving_rate': float(0.9),
            'is_test': False
        }
        accum = np.zeros(1).astype("float32")
        accum[0] = 1
        state = np.zeros(1).astype("float32")
        state[0] = 1
        scale = np.zeros(1).astype("float32")
        scale[0] = 0.001
        self.inputs = {
            'X': np.random.random((8, 16, 7, 7)).astype("float32"),
            'InScale': scale,
            'InAccum': accum,
            'InState': state,
        }

        out_accum = np.zeros(1).astype("float32")
        out_state = np.zeros(1).astype("float32")
        out_scale = np.zeros(1).astype("float32")
        out_accum[0] = self.attrs['moving_rate'] * accum[0] + np.max(
            np.abs(self.inputs['X'])).astype("float32")
        out_state[0] = self.attrs['moving_rate'] * state[0] + 1
        out_scale = out_accum / out_state
        out_data = self.calc_output(out_scale)
        self.outputs = {
            'Out': out_data,
            'OutAccum': out_accum,
            'OutState': out_state,
            'OutScale': out_scale,
        }

    def init_type(self):
        self.op_type = "fake_quantize_moving_average_abs_max"

    def calc_output(self, out_scale):
        return np.round(self.inputs['X'] / out_scale * (
            (1 << (self.attrs['bit_length'] - 1)) - 1))

    def test_check_output(self):
        self.check_output()


class TestFakeQuantDequantMovingOp(TestMovingOpBase):
    def init_type(self):
        self.op_type = "fake_quantize_dequantize_moving_average_abs_max"

    def calc_output(self, out_scale):
        range_v = (1 << (self.attrs['bit_length'] - 1)) - 1
        return np.round(self.inputs['X'] / out_scale *
                        range_v) * out_scale / range_v


视言's avatar
视言 已提交
213 214
if __name__ == "__main__":
    unittest.main()