resnet_model.md 9.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2
# Model Zoo - ImageNet #

D
dangqingqing 已提交
3
[ImageNet](http://www.image-net.org/) is a popular dataset for generic object classification. This tutorial provides convolutional neural network(CNN) models for ImageNet.
Z
zhangjinchao01 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

## ResNet Introduction

ResNets from paper [Deep Residual Learning for Image Recognition](http://arxiv.org/abs/1512.03385) won the 1st place on the ILSVRC 2015 classification task. They present residual learning framework to ease the training of networks that are substantially deeper than those used previously. The residual connections are shown in following figure. The left building block is used in network of 34 layers and the right bottleneck building block is used in network of 50, 101, 152 layers .

<center>![resnet_block](./resnet_block.jpg)</center>
<center>Figure 1. ResNet Block</center>

We present three ResNet models, which are converted from the models provided by the authors <https://github.com/KaimingHe/deep-residual-networks>.  The classfication errors tested in PaddlePaddle on 50,000 ILSVRC validation set with input images channel order of **BGR** by single scale with the shorter side of 256 and single crop as following table.
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<colgroup>
<col  class="left" />
<col  class="left" />
<col  class="left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="left">ResNet</th>
<th scope="col" class="left">Top-1</th>
<th scope="col" class="left">Model Size</th>
</tr>
</thead>

<tbody>
<tr>
<td class="left">ResNet-50</td>
<td class="left">24.9%</td>
<td class="left">99M</td>
</tr>
<tr>
<td class="left">ResNet-101</td>
<td class="left">23.7%</td>
<td class="left">173M</td>
</tr>
<tr>
<td class="left">ResNet-152</td>
<td class="left">23.2%</td>
<td class="left">234M</td>
</tr>
</tbody>

</table></center>
<br>

## ResNet Model

D
dangqingqing 已提交
51
See ```demo/model_zoo/resnet/resnet.py```. This config contains network of 50, 101 and 152 layers. You can specify layer number by adding argument like ```--config_args=layer_num=50``` in command line arguments.
Z
zhangjinchao01 已提交
52 53 54

### Network Visualization

D
dangqingqing 已提交
55
You can get a diagram of ResNet network by running the following commands. The script generates dot file and then converts dot file to PNG file, which uses installed draw_dot tool in our server. If you can not access the server, just install graphviz to convert dot file.
Z
zhangjinchao01 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

```
cd demo/model_zoo/resnet
./net_diagram.sh
```

### Model Download

```
cd demo/model_zoo/resnet
./get_model.sh
```
You can run above command to download all models and mean file and save them in ```demo/model_zoo/resnet/model``` if downloading successfully.

```
mean_meta_224  resnet_101  resnet_152  resnet_50
```
   * resnet_50: model of 50 layers.
   * resnet_101: model of 101 layers.
   * resnet_152: model of 152 layers.
   * mean\_meta\_224: mean file with 3 x 224 x 224 size in **BGR** order. You also can use three mean values: 103.939, 116.779, 123.68.

### Parameter Info

* **Convolution Layer Weight**

  As batch normalization layer is connected after each convolution layer, there is no parameter of bias and only one weight in this layer.
  shape: `(Co, ky, kx, Ci)`
   * Co: channle number of output feature map.
   * ky: filter size in vertical direction.
   * kx: filter size in horizontal direction.
   * Ci: channle number of input feature map.

  2-Dim matrix: (Co * ky * kx, Ci), saved in row-major order.

* **Fully connected Layer Weight**

  2-Dim matrix: (input layer size, this layer size), saved in row-major order.

* **[Batch Normalization](<http://arxiv.org/abs/1502.03167>) Layer Weight**

There are four parameters in this layer. In fact, only .w0 and .wbias are the learned parameters. The other two are therunning mean and variance respectively. They will be loaded in testing. Following table shows parameters of a batch normzalization layer.
<center>
<table border="2" cellspacing="0" cellpadding="6" rules="all" frame="border">
<colgroup>
<col  class="left" />
<col  class="left" />
<col  class="left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="left">Parameter Name</th>
<th scope="col" class="left">Number</th>
<th scope="col" class="left">Meaning</th>
</tr>
</thead>

<tbody>
<tr>
<td class="left">_res2_1_branch1_bn.w0</td>
<td class="left">256</td>
<td class="left">gamma, scale parameter</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.w1</td>
<td class="left">256</td>
<td class="left">mean value of feature map</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.w2</td>
<td class="left">256</td>
<td class="left">variance of feature map</td>
</tr>
<tr>
<td class="left">_res2_1_branch1_bn.wbias</td>
<td class="left">256</td>
<td class="left">beta, shift parameter</td>
</tr>
</tbody>

</table></center>
<br>

### Parameter Observation

Users who want to observe the parameters can use python to read:

```
import sys
import numpy as np

def load(file_name):
    with open(file_name, 'rb') as f:
        f.read(16) # skip header for float type.
        return np.fromfile(f, dtype=np.float32)

if __name__=='__main__':
    weight = load(sys.argv[1])
```

or simply use following shell command:

```
od -j 16 -f _res2_1_branch1_bn.w0
```

## Feature Extraction

We provide both C++ and Python interfaces to extract features. The following examples use data in `demo/model_zoo/resnet/example` to show the extracting process in detail.

### C++ Interface

First, specify image data list in `define_py_data_sources` in the config, see example `demo/model_zoo/resnet/resnet.py`.

```
    train_list = 'train.list' if not is_test else None
    # mean.meta is mean file of ImageNet dataset.
    # mean.meta size : 3 x 224 x 224.
    # If you use three mean value, set like:
    # "mean_value:103.939,116.779,123.68;"
    args={
        'mean_meta': "model/mean_meta_224/mean.meta",
        'image_size': 224, 'crop_size': 224,
        'color': True,'swap_channel:': [2, 1, 0]}
    define_py_data_sources2(train_list,
                           'example/test.list',
                           module="example.image_list_provider",
                           obj="processData",
                           args=args)
```

Second, specify layers to extract features in `Outputs()` of `resnet.py`. For example,

```
Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn")
```

D
dangqingqing 已提交
193
Third, specify model path and output directory in `extract_fea_c++.sh`, and then run the following commands.
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

```
cd demo/model_zoo/resnet
./extract_fea_c++.sh
```

If successful, features are saved in `fea_output/rank-00000` as follows. And you can use `load_feature_c` interface in `load_feature.py ` to load such a file.

```
-0.115318 -0.108358 ... -0.087884;-1.27664 ... -1.11516 -2.59123;
-0.126383 -0.116248 ... -0.00534909;-1.42593 ... -1.04501 -1.40769;
```

* Each line stores features of a sample. Here, the first line stores features of `example/dog.jpg` and second line stores features of `example/cat.jpg`.
* Features of different layers are splitted by `;`, and their order is consistent with the layer order in `Outputs()`. Here, the left features are `res5_3_branch2c_conv` layer and right features are `res5_3_branch2c_bn` layer.

### Python Interface

`demo/model_zoo/resnet/classify.py` is an example to show how to use python to extract features. Following example still uses data of `./example/test.list`. Command is as follows:

```
cd demo/model_zoo/resnet
./extract_fea_py.sh
```

extract_fea_py.sh:

```
python classify.py \
     --job=extract \
     --conf=resnet.py\
225
     --use_gpu=1 \
Z
zhangjinchao01 已提交
226 227 228 229 230 231 232
     --mean=model/mean_meta_224/mean.meta \
     --model=model/resnet_50 \
     --data=./example/test.list \
     --output_layer="res5_3_branch2c_conv,res5_3_branch2c_bn" \
     --output_dir=features

```
233 234 235 236 237 238 239 240 241
* \--job=extract:              specify job mode to extract feature.
* \--conf=resnet.py:           network configure.
* \--use_gpu=1:             speficy GPU mode.
* \--model=model/resnet_5:     model path.
* \--data=./example/test.list: data list.
* \--output_layer="xxx,xxx":   specify layers to extract features.
* \--output_dir=features:      output diretcoty.

Note, since the convolution layer in these ResNet models is suitable for the cudnn implementation which only support GPU. It not support CPU mode because of compatibility issue and we will fix later.
Z
zhangjinchao01 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

If run successfully, you will see features saved in `features/batch_0`, this file is produced with cPickle. You can use `load_feature_py` interface in `load_feature.py` to open the file, and it returns a dictionary as follows:

```
{
'cat.jpg': {'res5_3_branch2c_conv': array([[-0.12638293, -0.116248  , -0.11883899, ..., -0.00895038, 0.01994277, -0.00534909]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.42593431, -1.28918779, -1.32414699, ..., -1.45933616, -1.04501402, -1.40769434]], dtype=float32)},
'dog.jpg': {'res5_3_branch2c_conv': array([[-0.11531784, -0.10835785, -0.08809858, ...,0.0055237, 0.01505112, -0.08788397]], dtype=float32), 'res5_3_branch2c_bn': array([[-1.27663755, -1.18272924, -0.90937918, ..., -1.25178063, -1.11515927, -2.59122872]], dtype=float32)}
}
```

Observed carefully, these feature values are consistent with the above results extracted by C++ interface.

## Prediction

`classify.py` also can be used to predict. We provide an example script `predict.sh` to predict data in `example/test.list` using a ResNet model with 50 layers.

```
cd demo/model_zoo/resnet
./predict.sh
```

predict.sh calls the `classify.py`:

```
python classify.py \
     --job=predict \
     --conf=resnet.py\
     --multi_crop \
     --model=model/resnet_50 \
271
     --use_gpu=1 \
Z
zhangjinchao01 已提交
272 273
     --data=./example/test.list
```
274 275 276 277 278 279
* \--job=extract:              speficy job mode to predict.
* \--conf=resnet.py:           network configure.
* \--multi_crop:               use 10 crops and average predicting probability.
* \--use_gpu=1:             speficy GPU mode.
* \--model=model/resnet_50:    model path.
* \--data=./example/test.list: data list.
Z
zhangjinchao01 已提交
280 281 282 283 284 285 286

If run successfully, you will see following results, where 156 and 285 are labels of the images.

```
Label of example/dog.jpg is: 156
Label of example/cat.jpg is: 282
```