README.md 5.1 KB
Newer Older
H
Helin Wang 已提交
1
# Python Data Reader Design Doc
2

H
Helin Wang 已提交
3
Paddle reads data from data reader during training. It will be passed into `paddle.train` as a parameter.
4

H
Helin Wang 已提交
5
## Data Reader Interface
6

H
Helin Wang 已提交
7
Data reader is a function with no parameter that creates a iterable (anything can be used in `for x in iterable`):
8 9

```
H
Helin Wang 已提交
10
iterable = data_reader()
11 12
```

H
Helin Wang 已提交
13
Element produced for the iterable should be a **single** entry of data, **not** a mini batch. That entry of data could be a single item, or a tuple of items. Item should be of [supported type](http://www.paddlepaddle.org/doc/ui/data_provider/pydataprovider2.html?highlight=dense_vector#input-types) (e.g., numpy 1d array of float32, int, list of int)
14

H
Helin Wang 已提交
15
An example implementation for single item data reader:
16

H
Helin Wang 已提交
17 18 19 20 21 22 23 24 25 26 27
```python
def data_reader_fake_image():
	while True:
		yield numpy.random.uniform(-1, 1, size=20*20)
```

An example implementation for multiple item data reader:
```python
def data_reader_fake_image_and_label():
	while True:
		yield numpy.random.uniform(-1, 1, size=20*20), False
28
```
H
Helin Wang 已提交
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43
## Usage

data reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`:

```python
# two data layer is created:
image_layer = paddle.layer.data("image", ...)
label_layer = paddle.layer.data("label", ...)

# ...

paddle.train(paddle.dataset.mnist, {"image":0, "label":1}, 128, 10, ...)
```

H
Helin Wang 已提交
44 45
## Data Reader Decorators

H
Helin Wang 已提交
46
Data reader decorators takes a single or multiple data reader, returns a new data reader. It is similar to a [python decorator](https://wiki.python.org/moin/PythonDecorators), but it does not use `@` syntax.
H
Helin Wang 已提交
47

48
Since we have a strict interface for data readers (no parameter, return a single data item). Data reader can be used flexiable via data reader decorators. Following are a few examples:
H
Helin Wang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

### Prefetch Data

Since reading data may take time and training can not proceed without data. It is generally a good idea to prefetch data.

Use `paddle.reader.buffered` to prefetch data:

```python
buffered_reader = paddle.reader.buffered(paddle.dataset.mnist, 100)
```

`buffered_reader` will try to buffer (prefetch) `100` data entries.

### Compose Multiple Data Readers

For example, we want to use a source of real images (reusing mnist dataset), and a source of fake images as input for [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).

We can do:

```python
def data_reader_fake_image():
	while True:
		yield numpy.random.uniform(-1, 1, size=20*20)

def data_reader_bool(t):
	while True:
		yield t

true_reader = lambda : data_reader_bool(True)
false_reader = lambda : data_reader_bool(False)

reader = paddle.reader.combine(paddle.dataset.mnist, data_reader_fake_image, true_reader, false_reader)
81 82
# Skipped 1 because paddle.dataset.mnist produces two items per data entry.
# And we don't care second item at this time.
H
Helin Wang 已提交
83 84 85 86 87
paddle.train(reader, {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...)
```

### Shuffle

88
Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader that buffers `n` data entries and shuffle them before a data entry is read.
H
Helin Wang 已提交
89 90 91 92

Example:
```python
reader = paddle.reader.shuffle(paddle.dataset.mnist, 512)
93 94 95 96 97 98
```

## Q & A

### Why return only a single entry, but not a mini batch?

99
If a mini batch is returned, data reader need to take care of batch size. But batch size is a concept for training, it makes more sense for user to specify batch size as a parameter for `train`.
100

H
Helin Wang 已提交
101
Practically, always return a single entry make reusing existing data reader much easier (e.g., if existing data reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).
102

H
Helin Wang 已提交
103 104 105 106 107
### Why use a dictionary but not a list to provide mapping?

We decided to use dictionary (`{"image":0, "label":1}`) instead of list (`["image", "label"]`) is because that user can easily resue item (e.g., using `{"image_a":0, "image_b":0, "label":1}`) or skip item (e.g., using `{"image_a":0, "label":2}`).

### How to create custom data reader
108 109

```python
H
Helin Wang 已提交
110 111 112
def image_reader(image_path, label_path):
	f = open(image_path)
	l = open(label_path)
113 114 115 116 117
	images = numpy.fromfile(
		f, 'ubyte', count=n * 28 * 28).reshape((n, 28 * 28)).astype('float32')
	images = images / 255.0 * 2.0 - 1.0
	labels = numpy.fromfile(l, 'ubyte', count=n).astype("int")
	for i in xrange(n):
H
Helin Wang 已提交
118
		yield images[i, :], labels[i] # a single entry of data is created each time
119 120
	f.close()

H
Helin Wang 已提交
121 122 123
# use python lambda to change image_reader into a function with no parameters.
reader = lambda : image_reader("/path/to/image_file", "/path/to/label_file")
paddle.train(reader, {"image":0, "label":1}, ...)
124 125 126 127 128 129 130
```

### How is `paddle.train` implemented

An example implementation of paddle.train could be:

```python
H
Helin Wang 已提交
131
def minibatch_decorater(reader, minibatch_size):
132 133 134 135 136 137 138
	def ret():
		r = reader()
		buf = [r.next() for x in xrange(minibatch_size)]
		while len(buf) > 0:
			yield buf
			buf = [r.next() for x in xrange(minibatch_size)]
	return ret
139

H
Helin Wang 已提交
140
def train(reader, mapping, batch_size, total_pass):
141
	for pass_idx in range(total_pass):
142
		for mini_batch in minibatch_decorater(reader): # this loop will never end in online learning.
143 144
			do_forward_backward(mini_batch, mapping)
```