distance.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = ['PairwiseDistance']

import numpy as np

import paddle
from ...fluid.dygraph import layers
from ...fluid.framework import core, in_dygraph_mode
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid.layer_helper import LayerHelper


class PairwiseDistance(layers.Layer):
    """
    This operator computes the pairwise distance between two vectors. The
    distance is calculated by p-oreder norm:

    .. math::

        \Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}.

    Parameters:
        p (float): The order of norm. The default value is 2.
37
        epsilon (float, optional): Add small value to avoid division by zero,
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
            default value is 1e-6.
        keepdim (bool, optional): Whether to reserve the reduced dimension
            in the output Tensor. The result tensor is one dimension less than
            the result of ``'x-y'`` unless :attr:`keepdim` is True, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        x: :math:`(N, D)` where `D` is the dimension of vector, available dtype
            is float32, float64.
        y: :math:`(N, D)`, y have the same shape and dtype as x.
        out: :math:`(N)`. If :attr:`keepdim` is ``True``, the out shape is :math:`(N, 1)`.
            The same dtype as input tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            x_np = np.array([[1., 3.], [3., 5.]]).astype(np.float64)
            y_np = np.array([[5., 6.], [7., 8.]]).astype(np.float64)
            x = paddle.to_variable(x_np)
            y = paddle.to_variable(y_np)
            dist = paddle.nn.PairwiseDistance()
            distance = dist(x, y)
            print(distance.numpy()) # [5. 5.]

    """

69
    def __init__(self, p=2., epsilon=1e-6, keepdim=False, name=None):
70 71
        super(PairwiseDistance, self).__init__()
        self.p = p
72
        self.epsilon = epsilon
73 74 75
        self.keepdim = keepdim
        self.name = name
        check_type(self.p, 'porder', (float, int), 'PairwiseDistance')
76
        check_type(self.epsilon, 'epsilon', (float), 'PairwiseDistance')
77 78 79 80 81 82
        check_type(self.keepdim, 'keepdim', (bool), 'PairwiseDistance')

    def forward(self, x, y):
        if in_dygraph_mode():
            sub = core.ops.elementwise_sub(x, y)
            return core.ops.p_norm(sub, 'axis', 1, 'porder', self.p, 'keepdim',
83
                                   self.keepdim, 'epsilon', self.epsilon)
84 85 86 87 88 89 90

        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'PairwiseDistance')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'PairwiseDistance')
        sub = paddle.elementwise_sub(x, y)

91
        helper = LayerHelper("PairwiseDistance", name=self.name)
92 93 94 95
        attrs = {
            'axis': 1,
            'porder': self.p,
            'keepdim': self.keepdim,
96
            'epsilon': self.epsilon,
97
        }
98
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
99 100 101 102
        helper.append_op(
            type='p_norm', inputs={'X': sub}, outputs={'Out': out}, attrs=attrs)

        return out