sequence_reverse_op.h 6.0 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <memory>
S
sneaxiy 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
F
Feiyu Chan 已提交
20
#include "paddle/pten/kernels/funcs/algorithm.h"
S
sneaxiy 已提交
21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

class SequenceReverseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::NotFound("Input(X) of SequenceReverse must exist"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Y"), true,
        platform::errors::NotFound("Output(Y) of SequenceReverse must exist"));
S
sneaxiy 已提交
36 37

    auto x_dim = ctx->GetInputDim("X");
38 39 40 41 42 43 44
    PADDLE_ENFORCE_GE(
        x_dim.size(), 2,
        platform::errors::InvalidArgument(
            "The rank of SequenceReverseOp Input(X) must be greater "
            "than or equal to 2. But the Input(X) tensor's rank we received is "
            "%d",
            x_dim.size()));
S
sneaxiy 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    ctx->SetOutputDim("Y", x_dim);
    ctx->ShareLoD("X", "Y");
  }
};

class SequenceReverseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input LoDTensor of sequence_reverse op.");
    AddOutput("Y", "The output LoDTensor of sequence_reverse op.");
    AddComment(R"DOC(
SequenceReverse Operator.

Reverse each sequence in input X along dim 0.

Assuming X is a LoDTensor with dims [5, 4] and lod [[0, 2, 5]], where:

X.data() = [
  [1, 2, 3, 4],
  [5, 6, 7, 8], # the 0-th sequence with length 2
  [9, 10, 11, 12],
  [13, 14, 15, 16],
  [17, 18, 19, 20] # the 1-st sequence with length 3
]

The output Y would be a LoDTensor sharing the same dims and lod with input X,
and:

Y.data() = [
  [5, 6, 7, 8],
  [1, 2, 3, 4], # the reversed 0-th sequence with length 2
  [17, 18, 19, 20],
  [13, 14, 15, 16],
  [9, 10, 11, 12] # the reversed 1-st sequence with length 3
]

This Operator is useful to build a reverse dynamic RNN network.
S
sneaxiy 已提交
83 84

This Operator only supports one-level lod currently.
S
sneaxiy 已提交
85 86 87 88 89 90 91 92 93 94 95 96
    )DOC");
  }
};

template <typename T>
struct SequenceReverseFunctor {
  SequenceReverseFunctor(const T *x, T *y, const size_t *lod, size_t lod_count,
                         size_t row_numel)
      : x_(x), y_(y), lod_(lod), lod_count_(lod_count), row_numel_(row_numel) {}

  HOSTDEVICE void operator()(size_t idx_x) const {
    auto row_idx_x = idx_x / row_numel_;
F
Feiyu Chan 已提交
97
    auto lod_idx = pten::funcs::UpperBound(lod_, lod_count_, row_idx_x);
S
sneaxiy 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    auto row_idx_y = lod_[lod_idx - 1] + (lod_[lod_idx] - 1 - row_idx_x);
    auto idx_y = row_idx_y * row_numel_ + idx_x % row_numel_;
    y_[idx_y] = x_[idx_x];
  }

  const T *x_;
  T *y_;
  const size_t *lod_;
  size_t lod_count_;
  size_t row_numel_;
};

template <typename DeviceContext, typename T>
class SequenceReverseOpKernel : public framework::OpKernel<T> {
  using LoDTensor = framework::LoDTensor;

 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &x = *ctx.Input<LoDTensor>("X");
    auto *y = ctx.Output<LoDTensor>("Y");

119
    PADDLE_ENFORCE_EQ(x.lod().empty(), false,
120 121 122 123
                      platform::errors::NotFound(
                          "Input(X) Tensor of SequenceReverseOp does not "
                          "contain LoD information."));

S
sneaxiy 已提交
124
    PADDLE_ENFORCE_EQ(x.lod().size(), 1,
125 126 127 128
                      platform::errors::InvalidArgument(
                          "SequenceReverseOp only support one "
                          "level lod. But the Input(X) lod size is %d",
                          x.lod().size()));
S
sneaxiy 已提交
129 130 131 132

    const size_t *lod;
    size_t lod_count = x.lod()[0].size();

133
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
134 135 136 137 138
    if (platform::is_gpu_place(ctx.GetPlace())) {
      lod = x.lod()[0].CUDAData(ctx.GetPlace());
    } else {
#endif
      lod = x.lod()[0].data();
139
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
140 141 142 143 144 145 146 147
    }
#endif

    size_t limit = static_cast<size_t>(x.numel());
    size_t row_numel = static_cast<size_t>(limit / x.dims()[0]);
    auto *x_data = x.data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());

148 149 150 151
    PADDLE_ENFORCE_NE(
        x_data, y_data,
        platform::errors::InvalidArgument(
            "SequenceReverse Op does not support in-place operation"));
S
sneaxiy 已提交
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    if (platform::is_cpu_place(ctx.GetPlace())) {
      for (size_t idx = 0; idx < lod_count - 1; idx++) {
        auto start_pos = lod[idx];
        auto end_pos = lod[idx + 1];
        for (auto pos = start_pos; pos < end_pos; pos++) {
          auto cur_pos = end_pos - pos - 1 + start_pos;
          std::memcpy(y_data + pos * row_numel, x_data + cur_pos * row_numel,
                      row_numel * sizeof(T));
        }
      }
    } else {
      auto &dev_ctx = ctx.template device_context<DeviceContext>();

      SequenceReverseFunctor<T> functor(x_data, y_data, lod, lod_count,
                                        row_numel);
      platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
      for_range(functor);
    }
S
sneaxiy 已提交
171 172 173
  }
};

H
hong 已提交
174 175
template <typename T>
class SequenceReverseGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
176
 public:
H
hong 已提交
177
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
178 179

 protected:
180
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
181
    op->SetType("sequence_reverse");
H
hong 已提交
182 183 184
    op->SetInput("X", this->OutputGrad("Y"));
    op->SetOutput("Y", this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
185 186 187 188 189
  }
};

}  // namespace operators
}  // namespace paddle