rmsprop_op.h 10.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
sneaxiy 已提交
16
#include <math.h>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
19 20
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
F
Feiyu Chan 已提交
21
#include "paddle/pten/kernels/funcs/algorithm.h"
22 23 24 25

namespace paddle {
namespace operators {

S
sneaxiy 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
template <typename T>
struct DenseRmspropGradFunctor {
  inline explicit DenseRmspropGradFunctor(const T *grad) : grad_(grad) {}

  HOSTDEVICE inline T operator()(int64_t idx) const { return grad_[idx]; }

  const T *grad_;
};

template <typename T>
struct SparseRmspropGradFunctor {
  inline SparseRmspropGradFunctor(const T *grad, const int64_t *rows,
                                  int64_t row_numel, int64_t row_count)
      : grad_(grad),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

  HOSTDEVICE inline T operator()(int64_t idx) const {
F
Feiyu Chan 已提交
45 46
    auto row_idx =
        pten::funcs::BinarySearch(rows_, row_count_, idx / row_numel_);
S
sneaxiy 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    return row_idx >= 0 ? grad_[row_idx * row_numel_ + idx % row_numel_] : 0;
  }

  const T *grad_;
  const int64_t *rows_;
  int64_t row_numel_;
  int64_t row_count_;
};

template <typename T, typename GradFunctor>
struct UncenteredRmspropFunctor {
  UncenteredRmspropFunctor(T *param, T *ms, T *mom, const T *lr, T rho,
                           T epsilon, T momentum,
                           const GradFunctor &grad_functor)
      : param_(param),
        ms_(ms),
        mom_(mom),
        lr_(lr),
        rho_(rho),
        epsilon_(epsilon),
        momentum_(momentum),
        grad_functor_(grad_functor) {}

  HOSTDEVICE inline void operator()(int64_t idx) const {
    T g = grad_functor_(idx);
    T ms_out = rho_ * ms_[idx] + (1 - rho_) * g * g;
    T mom_out = momentum_ * mom_[idx] + lr_[0] * g / sqrt(ms_out + epsilon_);
    param_[idx] -= mom_out;
    ms_[idx] = ms_out;
    mom_[idx] = mom_out;
  }

  T *param_;
  T *ms_;
  T *mom_;
  const T *lr_;
  T rho_;
  T epsilon_;
  T momentum_;
  GradFunctor grad_functor_;
};

template <typename T, typename GradFunctor>
struct CenteredRmspropFunctor {
  CenteredRmspropFunctor(T *param, T *ms, T *mom, T *mean_grad, const T *lr,
                         T rho, T epsilon, T momentum,
                         const GradFunctor &grad_functor)
      : param_(param),
        ms_(ms),
        mom_(mom),
        mean_grad_(mean_grad),
        lr_(lr),
        rho_(rho),
        epsilon_(epsilon),
        momentum_(momentum),
        grad_functor_(grad_functor) {}

  HOSTDEVICE inline void operator()(int64_t idx) const {
    T g = grad_functor_(idx);
    T ms_out = rho_ * ms_[idx] + (1 - rho_) * g * g;
    T mg_out = rho_ * mean_grad_[idx] + (1 - rho_) * g;
    T mom_out = momentum_ * mom_[idx] +
                lr_[0] * g / sqrt(ms_out - mg_out * mg_out + epsilon_);
    param_[idx] -= mom_out;
    ms_[idx] = ms_out;
    mom_[idx] = mom_out;
    mean_grad_[idx] = mg_out;
  }

  T *param_;
  T *ms_;
  T *mom_;
  T *mean_grad_;
  const T *lr_;
  T rho_;
  T epsilon_;
  T momentum_;
  GradFunctor grad_functor_;
};

Q
QI JUN 已提交
127
template <typename DeviceContext, typename T>
128 129
class RmspropOpKernel : public framework::OpKernel<T> {
 public:
S
sneaxiy 已提交
130
  void Compute(const framework::ExecutionContext &ctx) const override {
S
sneaxiy 已提交
131
    using LoDTensor = framework::LoDTensor;
S
sneaxiy 已提交
132
    auto *grad_var = ctx.InputVar("Grad");
S
sneaxiy 已提交
133 134 135
    auto *param_out = ctx.Output<LoDTensor>("ParamOut");
    auto *moment_out = ctx.Output<LoDTensor>("MomentOut");
    auto *mean_square_out = ctx.Output<LoDTensor>("MeanSquareOut");
136

S
sneaxiy 已提交
137 138 139 140
    auto epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
    auto rho = static_cast<T>(ctx.Attr<float>("decay"));
    auto momentum = static_cast<T>(ctx.Attr<float>("momentum"));
    bool centered = ctx.Attr<bool>("centered");
141

S
sneaxiy 已提交
142 143 144 145
    auto &p_tensor = *ctx.Input<LoDTensor>("Param");
    auto &ms_tensor = *ctx.Input<LoDTensor>("MeanSquare");
    auto &lr_tensor = *ctx.Input<LoDTensor>("LearningRate");
    auto &mom_tensor = *ctx.Input<LoDTensor>("Moment");
146

147
    PADDLE_ENFORCE_EQ(p_tensor.IsSharedBufferWith(*param_out), true,
C
Chengmo 已提交
148 149
                      platform::errors::InvalidArgument(
                          "Param and ParamOut must be the same Tensor"));
150
    PADDLE_ENFORCE_EQ(mom_tensor.IsSharedBufferWith(*moment_out), true,
C
Chengmo 已提交
151 152 153
                      platform::errors::InvalidArgument(
                          "Moment and MomentOut must be the same Tensor"));
    PADDLE_ENFORCE_EQ(
154
        ms_tensor.IsSharedBufferWith(*mean_square_out), true,
C
Chengmo 已提交
155 156
        platform::errors::InvalidArgument(
            "MeanSquare and MeanSquareOut must be the same Tensor"));
S
sneaxiy 已提交
157 158 159 160

    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    size_t limit = static_cast<size_t>(ms_tensor.numel());

S
sneaxiy 已提交
161 162
    if (grad_var->IsType<LoDTensor>()) {
      auto &grad_tensor = grad_var->Get<LoDTensor>();
S
sneaxiy 已提交
163 164 165 166 167 168

      if (std::is_same<DeviceContext, platform::CPUDeviceContext>::value) {
        auto &place =
            *ctx.template device_context<DeviceContext>().eigen_device();
        auto lr_value = lr_tensor.data<T>()[0];

169 170 171 172
        auto p = framework::EigenVector<T>::Flatten(p_tensor);
        auto ms = framework::EigenVector<T>::Flatten(ms_tensor);
        auto g = framework::EigenVector<T>::Flatten(grad_tensor);
        auto mom = framework::EigenVector<T>::Flatten(mom_tensor);
S
sneaxiy 已提交
173

174 175 176
        auto p_out = framework::EigenVector<T>::Flatten(*param_out);
        auto mom_out = framework::EigenVector<T>::Flatten(*moment_out);
        auto ms_out = framework::EigenVector<T>::Flatten(*mean_square_out);
S
sneaxiy 已提交
177 178 179

        ms_out.device(place) = rho * ms + (1 - rho) * g * g;
        if (centered) {
S
sneaxiy 已提交
180
          auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
181
          auto mg = framework::EigenVector<T>::Flatten(mg_tensor);
S
sneaxiy 已提交
182
          auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
C
Chengmo 已提交
183 184 185 186
          PADDLE_ENFORCE_EQ(
              &mg_tensor, mean_grad_out,
              platform::errors::InvalidArgument(
                  "MeanGrad and MeanGradOut must be the same Tensor"));
187
          auto mg_out = framework::EigenVector<T>::Flatten(*mean_grad_out);
S
sneaxiy 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201

          mg_out.device(place) = rho * mg + (1 - rho) * g;
          mom_out.device(place) =
              momentum * mom +
              lr_value * g / (ms_out - mg_out.square() + epsilon).sqrt();
        } else {
          mom_out.device(place) =
              momentum * mom + lr_value * g / (ms_out + epsilon).sqrt();
        }
        p_out.device(place) = p - mom_out;
      } else {
        DenseRmspropGradFunctor<T> grad_func(grad_tensor.data<T>());
        platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
        if (centered) {
S
sneaxiy 已提交
202 203
          auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
          auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
C
Chengmo 已提交
204 205 206 207
          PADDLE_ENFORCE_EQ(
              &mg_tensor, mean_grad_out,
              platform::errors::InvalidArgument(
                  "MeanGrad and MeanGradOut must be the same Tensor"));
S
sneaxiy 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221
          for_range(CenteredRmspropFunctor<T, DenseRmspropGradFunctor<T>>(
              param_out->mutable_data<T>(ctx.GetPlace()),
              mean_square_out->mutable_data<T>(ctx.GetPlace()),
              moment_out->mutable_data<T>(ctx.GetPlace()),
              mean_grad_out->mutable_data<T>(ctx.GetPlace()),
              lr_tensor.data<T>(), rho, epsilon, momentum, grad_func));
        } else {
          for_range(UncenteredRmspropFunctor<T, DenseRmspropGradFunctor<T>>(
              param_out->mutable_data<T>(ctx.GetPlace()),
              mean_square_out->mutable_data<T>(ctx.GetPlace()),
              moment_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
              rho, epsilon, momentum, grad_func));
        }
      }
222 223 224 225
    } else if (grad_var->IsType<pten::SelectedRows>()) {
      auto &grad = grad_var->Get<pten::SelectedRows>();
      pten::SelectedRows tmp_merged_grad;
      pten::SelectedRows *merged_grad = &tmp_merged_grad;
S
sneaxiy 已提交
226 227 228 229
      math::scatter::MergeAdd<DeviceContext, T> merge_func;
      merge_func(dev_ctx, grad, merged_grad);

      platform::ForRange<DeviceContext> for_range(dev_ctx, limit);
S
sneaxiy 已提交
230 231
      const int64_t *rows = merged_grad->rows().Data(ctx.GetPlace());

S
sneaxiy 已提交
232 233 234 235 236
      auto &merged_tensor = merged_grad->value();
      int64_t row_count = merged_grad->rows().size();
      int64_t row_numel = merged_tensor.numel() / row_count;
      SparseRmspropGradFunctor<T> grad_func(merged_tensor.data<T>(), rows,
                                            row_numel, row_count);
237

S
sneaxiy 已提交
238
      if (centered) {
S
sneaxiy 已提交
239 240
        auto &mg_tensor = *ctx.Input<LoDTensor>("MeanGrad");
        auto *mean_grad_out = ctx.Output<LoDTensor>("MeanGradOut");
C
Chengmo 已提交
241 242 243 244
        PADDLE_ENFORCE_EQ(
            &mg_tensor, mean_grad_out,
            platform::errors::InvalidArgument(
                "MeanGrad and MeanGradOut must be the same Tensor"));
S
sneaxiy 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257
        for_range(CenteredRmspropFunctor<T, SparseRmspropGradFunctor<T>>(
            param_out->mutable_data<T>(ctx.GetPlace()),
            mean_square_out->mutable_data<T>(ctx.GetPlace()),
            moment_out->mutable_data<T>(ctx.GetPlace()),
            mean_grad_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
            rho, epsilon, momentum, grad_func));
      } else {
        for_range(UncenteredRmspropFunctor<T, SparseRmspropGradFunctor<T>>(
            param_out->mutable_data<T>(ctx.GetPlace()),
            mean_square_out->mutable_data<T>(ctx.GetPlace()),
            moment_out->mutable_data<T>(ctx.GetPlace()), lr_tensor.data<T>(),
            rho, epsilon, momentum, grad_func));
      }
258
    } else {
C
Chengmo 已提交
259 260 261 262 263 264
      PADDLE_ENFORCE_EQ(false, true,
                        platform::errors::PermissionDenied(
                            "Unsupported Variable Type of Grad "
                            "in RmspropOp. Excepted LodTensor "
                            "or SelectedRows, But received [%s]",
                            paddle::framework::ToTypeName(grad_var->Type())));
265
    }
266 267 268 269 270
  }
};

}  // namespace operators
}  // namespace paddle