hybrid_parallel_mp_model.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import paddle
import numpy as np
import random
import paddle.distributed as dist
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle.io import DataLoader, Dataset
import unittest


def set_random_seed(seed, dp_id, rank_id):
    """Set random seed for reproducability."""
    random.seed(seed)
    np.random.seed(seed + dp_id)
    paddle.seed(seed + rank_id)


vocab_size = 5
hidden_size = 10
inner_size = 8
output_size = 2
seq_length = 2


class SimpleMPNet(fluid.dygraph.Layer):
    def __init__(self, vocab_size, hidden_size, inner_size, output_size, np_fc1,
                 np_fc2, mp_id):
        super(SimpleMPNet, self).__init__()

        if mp_id == 0:
            init_fc1_data = np_fc1[:, :(inner_size // 2)]
            init_fc2_data = np_fc2[:(inner_size // 2), :]
        else:
            init_fc1_data = np_fc1[:, (inner_size // 2):]
            init_fc2_data = np_fc2[(inner_size // 2):, :]

        self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
            hidden_size,
            inner_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(init_fc1_data)),
            gather_output=False,
            has_bias=True)

        self.linear2 = fleet.meta_parallel.RowParallelLinear(
            inner_size,
            hidden_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(init_fc2_data)),
            input_is_parallel=True,
            has_bias=True)

        self.linear3 = paddle.nn.Linear(
            hidden_size,
            output_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.nn.initializer.Constant(value=0.5))

    def forward(self, x):
        x = self.embedding(x)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
        return x


class SimpleDPNet(fluid.dygraph.Layer):
    def __init__(self, vocab_size, hidden_size, inner_size, output_size, np_fc1,
                 np_fc2):

        super(SimpleDPNet, self).__init__()
        self.linear1 = paddle.nn.Linear(
            hidden_size,
            inner_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(np_fc1)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.linear2 = paddle.nn.Linear(
            inner_size,
            hidden_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Assign(np_fc2)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.linear3 = paddle.nn.Linear(
            hidden_size,
            output_size,
            weight_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)),
            bias_attr=paddle.framework.ParamAttr(
                initializer=paddle.nn.initializer.Constant(0.0)))

        self.embedding = paddle.nn.Embedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.nn.initializer.Constant(value=0.5))

    def forward(self, x):
        x = self.embedding(x)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
        return x


class TrainDataset(Dataset):
    def __init__(self, length):
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, index):
        np_input_data = np.random.randint(0, vocab_size, (seq_length, ))
        return np_input_data


145
class TestDistMPTraning(unittest.TestCase):
146 147 148 149 150 151 152 153 154 155 156
    def setUp(self):
        strategy = fleet.DistributedStrategy()
        self.model_parallel_size = 2
        self.data_parallel_size = 1
        strategy.hybrid_configs = {
            "dp_degree": self.data_parallel_size,
            "mp_degree": self.model_parallel_size,
            "pp_degree": 1
        }
        fleet.init(is_collective=True, strategy=strategy)

157 158 159 160 161 162 163 164 165 166 167 168 169 170
    def train_batch(self, batch, model, optimizer, is_mp):
        output = model(batch)
        loss = output.mean()
        loss.backward()  # do backward
        optimizer.step()  # update parameters
        optimizer.clear_grad()
        return loss

    def build_optimizer(self, model):
        optimizer = paddle.optimizer.SGD(learning_rate=0.001,
                                         parameters=model.parameters())
        return optimizer

    def build_model_optimizer(self):
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        hcg = fleet.get_hybrid_communicate_group()
        word_size = hcg.get_model_parallel_world_size()
        mp_id = hcg.get_model_parallel_rank()
        dp_id = hcg.get_data_parallel_rank()
        rank_id = dist.get_rank()
        set_random_seed(1024, dp_id, rank_id)

        np_fc1 = np.random.random_sample((hidden_size, inner_size))
        np_fc2 = np.random.random_sample((inner_size, hidden_size))

        train_data = TrainDataset(length=10000)

        train_batch_sampler = paddle.io.DistributedBatchSampler(
            train_data,
            batch_size=4,
            shuffle=False,
            num_replicas=self.data_parallel_size,
            rank=dp_id)
        train_data_loader = DataLoader(
            dataset=train_data,
            batch_sampler=train_batch_sampler,
            num_workers=0,
            return_list=True)

        model_a = SimpleMPNet(vocab_size, hidden_size, inner_size, output_size,
                              np_fc1, np_fc2, mp_id)
197
        optimizer_a = self.build_optimizer(model_a)
198 199 200 201 202
        model_a = fleet.distributed_model(model_a)
        optimizer_a = fleet.distributed_optimizer(optimizer_a)

        model_b = SimpleDPNet(vocab_size, hidden_size, inner_size, output_size,
                              np_fc1, np_fc2)
203 204 205 206 207 208 209
        optimizer_b = self.build_optimizer(model_b)

        return model_a, optimizer_a, model_b, optimizer_b, train_data_loader

    def test_mp_model(self):
        model_a, optimizer_a, model_b, optimizer_b, train_data_loader = self.build_model_optimizer(
        )
210 211 212 213

        for step, batch in enumerate(train_data_loader):
            if step > 5:
                return
214 215 216 217 218 219

            loss_a = self.train_batch(batch, model_a, optimizer_a, True)
            loss_b = self.train_batch(batch, model_b, optimizer_b, False)

            np.testing.assert_allclose(
                loss_a.numpy(), loss_b.numpy(), rtol=1e-5)
220 221 222 223


if __name__ == "__main__":
    unittest.main()