operator.h 9.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21 22
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
25 26 27 28 29
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
30 31 32 33

namespace paddle {
namespace framework {

34 35 36 37 38 39 40 41 42 43 44 45 46
/// If a variable is a empty variable, that name will be used.
const std::string kEmptyVarName = "@EMPTY@";

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
const std::string kTempVarName = "@TEMP@";

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
const std::string kGradVarSuffix = "@GRAD";

/// Variables with this suffix are supposed to be filled up with zeros.
Y
Yi Wang 已提交
47
const std::string kZeroVarSuffix = "@ZERO";
48 49 50 51 52

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
53
class OperatorBase;
54 55
class InferShapeContext;
class ExecutionContext;
56

Q
Qiao Longfei 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

74
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
75

Q
Qiao Longfei 已提交
76 77 78 79
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
80 81
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
82
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
83 84

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
85
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
86 87
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
88 89
  virtual bool IsNetOp() const { return false; }

D
dongzhihong 已提交
90 91 92
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
93
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
94
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
95

Y
Yu Yang 已提交
96
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
97
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yu Yang 已提交
98
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
99
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
100 101
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
102
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
103

Q
Qiao Longfei 已提交
104
 public:
Q
Qiao Longfei 已提交
105
  std::string type_;
D
dongzhihong 已提交
106 107 108 109
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
110 111
  std::unordered_map<std::string, std::vector<std::string>> inputs_;

D
dongzhihong 已提交
112 113
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
114
  std::unordered_map<std::string, std::vector<std::string>> outputs_;
Q
Qiao Longfei 已提交
115
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
116 117
};

118
class OperatorContext {
Y
Yan Chunwei 已提交
119
 public:
120
  OperatorContext(const OperatorBase* op, const Scope& scope)
121 122
      : op_(*op), scope_(scope) {}

Y
Yu Yang 已提交
123 124
  size_t InputSize(const std::string& name) const {
    return op_.inputs_.at(name).size();
Y
Yan Chunwei 已提交
125 126
  }

Y
Yu Yang 已提交
127 128
  size_t OutputSize(const std::string& name) const {
    return op_.outputs_.at(name).size();
Y
Yan Chunwei 已提交
129 130
  }

131
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
132
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
133 134
  }

135
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
136
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
137 138
  }

139 140
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
141 142
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
143
    res.reserve(names.size());
Y
Yan Chunwei 已提交
144
    std::transform(
145
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
146
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
147 148 149
    return res;
  }

150
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
151 152
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
153
    res.reserve(names.size());
Y
Yan Chunwei 已提交
154
    std::transform(
155
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
156
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
157 158 159
    return res;
  }

160 161
  template <typename T>
  const T* Input(const std::string& name) const {
162 163 164
    auto var = InputVar(name);
    PADDLE_ENFORCE(var != nullptr, "Input(%s) should not be nullptr", name);
    return &var->Get<T>();
165 166 167 168
  }

  template <typename T>
  T* Output(const std::string& name) const {
169 170 171
    auto var = OutputVar(name);
    PADDLE_ENFORCE(var != nullptr, "Output(%s) should not be nullptr", name);
    return var->GetMutable<T>();
172 173 174 175 176 177 178 179
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
180
                   [&](const std::string& sub_name) {
181
                     auto var = scope_.FindVar(sub_name);
182 183 184 185
                     PADDLE_ENFORCE(var != nullptr,
                                    "MultiInput(%s:%s) should not be nullptr",
                                    name, sub_name);
                     return &var->Get<T>();
186 187 188 189 190 191 192 193 194 195
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
196
                   [&](const std::string& sub_name) {
197
                     auto var = scope_.FindVar(sub_name);
198 199 200 201
                     PADDLE_ENFORCE(var != nullptr,
                                    "MultiOutput(%s:%s) should not be nullptr",
                                    name, sub_name);
                     return var->GetMutable<T>();
202 203 204 205 206
                   });
    return res;
  }

  const OperatorBase& op_;
207
  const Scope& scope_;
208 209 210 211
};

class InferShapeContext : public OperatorContext {
 public:
212
  InferShapeContext(const OperatorBase* op, const Scope& scope)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      : OperatorContext(op, scope) {}
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

class ExecutionContext : public OperatorContext {
 public:
233
  ExecutionContext(const OperatorBase* op, const Scope& scope,
D
dongzhihong 已提交
234
                   const platform::DeviceContext* device_context)
235 236
      : OperatorContext(op, scope), device_context_(device_context) {}

Q
qijun 已提交
237 238 239
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
240
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
241

D
dongzhihong 已提交
242
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
243

D
dongzhihong 已提交
244
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
245 246
};

Q
qijun 已提交
247 248
class OpKernel {
 public:
Q
qijun 已提交
249
  /**
250
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
251 252
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
253
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
254 255
   */

256
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
257 258 259 260

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
261 262
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
263 264
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
265

Y
Yu Yang 已提交
266
    OpKernelKey() = default;
L
liaogang 已提交
267
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
268 269 270
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
271 272 273
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
274 275 276 277 278 279 280 281 282 283 284
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
285

286
  void InferShape(const Scope& scope) const {
287 288 289
    InferShape(InferShapeContext(this, scope));
  }

Y
Yu Yang 已提交
290
  void Run(const Scope& scope,
Y
Yu Yang 已提交
291
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
292
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
D
dongzhihong 已提交
293
    opKernel->Compute(ExecutionContext(this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
294 295
  }

Y
Yu Yang 已提交
296 297 298 299
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
300
  }
Y
Yan Chunwei 已提交
301

Y
Yu Yang 已提交
302
 protected:
303
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
304 305 306 307
};

}  // namespace framework
}  // namespace paddle