memory_optimize_pass.cc 11.8 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

D
dzhwinter 已提交
15
#include "paddle/fluid/framework/details/memory_optimize_pass.h"
D
dzhwinter 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <algorithm>
#include <atomic>
#include <deque>
#include <fstream>
#include <iostream>
#include <iterator>
#include <memory>
#include <queue>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"

DEFINE_bool(enable_subgraph_optimize, false,
            "SubGraph also reuse global graph variables, it will reduce the "
            "memory occupation"
            "but a higher risk of memory reuse error. default disabled.");
DEFINE_string(memory_optimize_debug, "",
              "debug the operator output variable when do the variable reuse."
              "memory reuse pass."
              "only for debug, default disabled.");

namespace paddle {
namespace framework {
namespace details {

D
dzhwinter 已提交
46
std::unique_ptr<ir::Graph> MemoryOptimizePass::ApplyImpl(
D
dzhwinter 已提交
47 48
    std::unique_ptr<ir::Graph> graph) const {
  auto nodes = graph->Nodes();
D
dzhwinter 已提交
49
  CollectSkipVarsSet(nodes);
D
dzhwinter 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

  cfg_.reset(new details::ControlFlowGraph(*graph));
  cfg_->LiveVariableAnalysis();
  InitSSAGraphNodes();

  int reuse_id = 0;
  for (size_t idx = 0; idx < cfg_->Ops().size(); ++idx) {
    auto& op = cfg_->Ops()[idx];
    auto* op_desc = op->Op();
    // some op in graph has no op desc
    if (op_desc == nullptr) continue;
    if (OpHasSubBlock(op_desc)) {
      if (FLAGS_enable_subgraph_optimize) {
        SubGraphOptimize(op_desc);
      } else {
        VLOG(3) << op->Name()
                << " has subblock, but disable subgraph optimize. skipped.";
        continue;
      }
    }

    for (auto& var : op->outputs) {
D
dzhwinter 已提交
72 73 74
      if (!NodeCanReused(var) || cfg_->Use(op).count(var->Name()) == 0 ||
          skip_set_.count(var->Name()))
        continue;
D
dzhwinter 已提交
75
      ir::Node* cache = pool_.FindBestFitNode(var);
D
dzhwinter 已提交
76 77 78 79 80 81 82 83

      if (var->Name() == FLAGS_memory_optimize_debug) {
        VLOG(3) << "start match var " << DebugString(var) << " of op "
                << op->Name();
        VLOG(3) << pool_.ToString();
        VLOG(3) << "matched in pool : "
                << ((cache == nullptr) ? "False" : "True");
      }
D
dzhwinter 已提交
84

D
dzhwinter 已提交
85 86 87 88 89 90 91 92
      if (cache == nullptr) continue;
      if (var->Name() == cache->Name()) {
        VLOG(3) << "The same cache variable is cascade reused." << var->Name()
                << " is re-filled to the pool after"
                << "the reused op is finished. Current op can not "
                << "replace it again. Skip this candidate.";
        continue;

D
dzhwinter 已提交
93
        int node_idx_in_pool = pool_.GetNodeIndexInPool(cache);
D
dzhwinter 已提交
94 95 96 97
        VLOG(3) << string::Sprintf(
            "!!! %s,  %s => %s, cache idx %d, pool size %d",
            std::to_string(reuse_id++), DebugString(var), DebugString(cache),
            node_idx_in_pool, static_cast<int>(pool_.size()));
D
dzhwinter 已提交
98

D
dzhwinter 已提交
99 100 101 102 103 104 105 106 107 108 109 110
        // update CFG Graph on the fly.
        // reused var maybe re-fill into the pool
        cfg_->RenameVarInCFGGraph(var->Name(), cache->Name(), idx);
        // NOTE(dzhwinter): we need to both update the ProgramDesc
        // and IR Graph. because op_desc/var_desc is used in CreateOp,
        // CreateVar when running happens. But IR Graph
        // define the dependence relationship between nodes.
        RenameVarInGraphDesc(var->Name(), cache->Name(), idx);
        RenameVarInGraphNode(var->Name(), cache->Name(), idx, graph.get());

        pool_.Erase(cache);
      }
D
dzhwinter 已提交
111

D
dzhwinter 已提交
112 113 114 115 116
      // fill the pool
      std::unordered_set<std::string> unlived_vars;
      for (auto var : cfg_->LiveIn(op)) {
        if (cfg_->LiveOut(op).count(var) == 0) {
          unlived_vars.emplace(var);
D
dzhwinter 已提交
117 118
        }
      }
D
dzhwinter 已提交
119
      for (auto var : unlived_vars) {
D
dzhwinter 已提交
120
        ir::Node* var_node = cfg_->GetNodeByName(var, op);
D
dzhwinter 已提交
121
        if (NodeCanReused(var_node) && !pool_.Has(var_node)) {
D
dzhwinter 已提交
122
          pool_.Insert(var_node);
D
dzhwinter 已提交
123 124 125 126 127 128 129 130 131
        }
      }
    }
  }
  graph->ResolveHazard(var_nodes_);

  return graph;
}

D
dzhwinter 已提交
132
void MemoryOptimizePass::SubGraphOptimize(OpDesc* op_desc) const {
D
dzhwinter 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  // conditional block, while op and their grad op
  auto* sub_block_desc =
      AttrReader(op_desc->GetAttrMap()).Get<BlockDesc*>("sub_block");

  // create a mirror block to construct an IR Graph.
  ProgramDesc prog;
  auto* copy_block = prog.MutableBlock(0);
  for (auto* op : sub_block_desc->AllOps()) {
    auto* copy_op = copy_block->AppendOp();
    copy_op->CopyFrom(*op);
    copy_op->Flush();
  }

  for (auto* var : sub_block_desc->AllVars()) {
    auto* copy_var = copy_block->Var(var->Name());
    copy_var->SetDataType(var->GetDataType());
    // only lod tensor can be reused. So ignore the multiple dims case.
    copy_var->SetType(var->GetType());
    copy_var->SetShape(var->GetShape());
    copy_var->SetPersistable(var->Persistable());
  }

  ir::Graph sub_graph(prog);
  std::unordered_set<ir::Node*> sub_graph_all_ops;
  FilterVariables(sub_graph.Nodes(), [&](ir::Node* var) {
    // sub_graph_all_ops.emplace(var);
    if (var->IsVar() && !var->IsCtrlVar()) {
      sub_graph_all_ops.emplace(var);
    }
  });
  int sub_reuse_id = 0;
  // subgraph nodes is unordered, reuse need to follow the desc order.
  // find the right op node through the descs
  for (auto* sub_op_desc : sub_block_desc->AllOps()) {
    ir::Node* sub_op = nullptr;
    for (auto* node : sub_graph_all_ops) {
      if (node->Op() == sub_op_desc) {
        sub_op = node;
        break;
      }
    }
    PADDLE_ENFORCE(sub_op != nullptr);
    for (auto* var : sub_op->outputs) {
      if (NodeCanReused(var)) {
D
dzhwinter 已提交
177
        ir::Node* cache = pool_.FindBestFitNode(var);
D
dzhwinter 已提交
178 179 180 181
        if (cache != nullptr) {
          if (var->Var()->GetDataType() != cache->Var()->GetDataType()) {
            continue;
          }
D
dzhwinter 已提交
182
          int node_idx_in_pool = pool_.GetNodeIndexInPool(cache);
D
dzhwinter 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
          VLOG(3) << string::Sprintf(
              "!!! %s,  %s => %s, cache idx %d, pool size %d",
              std::to_string(sub_reuse_id++), DebugString(var),
              DebugString(cache), node_idx_in_pool,
              static_cast<int>(pool_.size()));
          // NOTE(dzh): subblock is not in IR graph. Modify the block_desc
          // immediately to make the subblock variable reuse strategy take
          // effect. Because it is a single op in graph. No need to
          // update the ir nodes.
          sub_op_desc->Rename(var->Name(), cache->Name());
          if (sub_op_desc->Block()->HasVar(var->Name())) {
            sub_op_desc->Block()->RemoveVar(var->Name());
          }
        }
      }
    }
  }
}

D
dzhwinter 已提交
202
void MemoryOptimizePass::CollectSkipVarsSet(
D
dzhwinter 已提交
203
    const std::unordered_set<ir::Node*>& nodes) const {
D
dzhwinter 已提交
204 205 206 207 208 209
  auto update_skip_set = [&](OpDesc* op_desc) {
    auto inputs = op_desc->InputArgumentNames();
    auto outputs = op_desc->OutputArgumentNames();
    skip_set_.insert(inputs.begin(), inputs.end());
    skip_set_.insert(outputs.begin(), outputs.end());
  };
D
dzhwinter 已提交
210 211 212
  for (auto& op : nodes) {
    if (!op->IsOp() || op->Op() == nullptr) continue;
    auto* op_desc = op->Op();
D
dzhwinter 已提交
213 214
    // NOTE(dzhwinter):
    // current block can not reuse next level block vars.
D
dzhwinter 已提交
215
    if (OpHasSubBlock(op_desc)) update_skip_set(op_desc);
D
dzhwinter 已提交
216 217 218
    // NOTE(dzhwinter):
    // distributed ops input/output name need to
    // keep same bettwen trainer/pserver
D
dzhwinter 已提交
219 220
    if (op_desc->Type() == "send") update_skip_set(op_desc);
    if (op_desc->Type() == "recv") update_skip_set(op_desc);
D
dzhwinter 已提交
221
    if (op_desc->Type() == "prefetch") update_skip_set(op_desc);
D
dzhwinter 已提交
222 223 224
  }
}

D
dzhwinter 已提交
225 226 227
void MemoryOptimizePass::RenameVarInGraphDesc(const std::string& var,
                                              const std::string& cache_var,
                                              size_t idx) const {
D
dzhwinter 已提交
228 229 230 231 232 233 234 235 236 237 238
  for (size_t i = idx; i < cfg_->Ops().size(); ++i) {
    auto* op = cfg_->Ops()[i];
    PADDLE_ENFORCE(op->IsOp() && op->Op());
    auto* op_desc = op->Op();
    op_desc->RenameInput(var, cache_var);
    op_desc->RenameOutput(var, cache_var);
    if (op_desc->Block()->HasVar(var)) op_desc->Block()->RemoveVar(var);
    op_desc->Flush();
  }
}

D
dzhwinter 已提交
239
void MemoryOptimizePass::InitSSAGraphNodes() const {
D
dzhwinter 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  std::unordered_map<std::string, std::unordered_set<ir::Node*>> all_vars;
  if (var_nodes_.empty()) {
    for (auto* op : cfg_->Ops()) {
      for (auto* node : op->inputs) {
        if (all_vars[node->Name()].count(node) == 0) {
          all_vars[node->Name()].emplace(node);
          var_nodes_[node->Name()].emplace_back(node);
        }
      }
      for (auto* node : op->outputs) {
        if (all_vars[node->Name()].count(node) == 0) {
          all_vars[node->Name()].emplace(node);
          var_nodes_[node->Name()].emplace_back(node);
        }
      }
    }
  }
}

D
dzhwinter 已提交
259 260 261 262
void MemoryOptimizePass::RenameVarInGraphNode(const std::string& var,
                                              const std::string& cache_var,
                                              size_t idx,
                                              ir::Graph* graph) const {
D
dzhwinter 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  // if replace happens, we need to create a newer version cache_var
  // but use the same dims/data_type with var.
  PADDLE_ENFORCE(var_nodes_[var].size() >= 1 &&
                 var_nodes_[var].at(0)->Var() != nullptr);
  std::unique_ptr<VarDesc> var_desc(new VarDesc(*var_nodes_[var].at(0)->Var()));
  var_desc->SetName(cache_var);

  for (size_t i = idx; i < cfg_->Ops().size(); ++i) {
    auto* op = cfg_->Ops()[i];

    // redirect the input to the latest version of cache_var
    for (auto* node : op->inputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        var_nodes_[cache_var].emplace_back(cache_node);

        // swap node to cache_node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        PADDLE_ENFORCE(node->inputs.size() == 1 && node->inputs[0]->IsOp());
        auto* prev_op = node->inputs[0];
        std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), node,
                     cache_node);
        cache_node->inputs.emplace_back(prev_op);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
      }
    }

    // if we need to rename the output,
    // always create a newer version of cache_var
    for (auto* node : op->outputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        var_nodes_[cache_var].emplace_back(cache_node);

        // swap node to cache node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        cache_node->inputs.emplace_back(op);
        std::replace(op->outputs.begin(), op->outputs.end(), node, cache_node);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
      }
    }
  }

  // release node of unused var in graph
  for (auto* node : var_nodes_[var]) {
    graph->RemoveNode(node);
  }
  var_nodes_.at(var).clear();
}

}  // namespace details
}  // namespace framework
}  // namespace paddle

D
dzhwinter 已提交
325 326
REGISTER_PASS(memory_optimize_pass,
              paddle::framework::details::MemoryOptimizePass)
D
dzhwinter 已提交
327
    .RequireGraphAttr(paddle::framework::details::kAllOpDescs);