dot_op.h 11.1 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chentianyu03 已提交
19 20
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
L
liuwei1031 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
C
chentianyu03 已提交
26 27
using complex64 = platform::complex64;
using complex128 = platform::complex128;
L
liuwei1031 已提交
28

C
chentianyu03 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41
template <typename T, typename R>
struct P {
  void operator()(T a, R b);
};

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotGradFunction {
  void operator()(const Tensor* tensor_x, const Tensor* tensor_y,
                  const Tensor* tensor_dout, Tensor* tensor_dx,
                  Tensor* tensor_dy,
                  const paddle::framework::ExecutionContext& ctx);
};

S
ShenLiang 已提交
42
template <typename DeviceContext, typename T>
C
chentianyu03 已提交
43 44 45 46 47
struct DotGradFunction<DeviceContext, T, math::EnableComplex<T>> {
  void operator()(const Tensor* tensor_x, const Tensor* tensor_y,
                  const Tensor* tensor_dout, Tensor* tensor_dx,
                  Tensor* tensor_dy,
                  const paddle::framework::ExecutionContext& ctx) {
S
ShenLiang 已提交
48
#ifdef __NVCC__
C
chentianyu03 已提交
49 50
    if (1 == tensor_dout->dims().size()) {
      auto dout = framework::EigenVector<T>::Flatten(*tensor_dout);
S
ShenLiang 已提交
51

C
chentianyu03 已提交
52 53 54 55 56
      if (tensor_dx) {
        auto y = framework::EigenVector<T>::Flatten(*tensor_y);
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());
S
ShenLiang 已提交
57

C
chentianyu03 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_y->numel());
        math::ConjFunctor<T> functor(tensor_y->data<T>(), tensor_y->numel(),
                                     tensor_dx->data<T>());
        for_range(functor);
        auto dx = framework::EigenVector<T>::Flatten(*tensor_dx);

        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = framework::EigenVector<T>::Flatten(*tensor_x);
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());

        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_y->numel());
        math::ConjFunctor<T> functor(tensor_x->data<T>(), tensor_x->numel(),
                                     tensor_dy->data<T>());
        for_range(functor);
        auto dy = framework::EigenVector<T>::Flatten(*tensor_dy);

        dy.device(dev) = dy * dout.broadcast(size);
      }
    } else {
W
wuhuanzhou 已提交
84
      auto dout = framework::EigenMatrix<T>::From(*tensor_dout);
C
chentianyu03 已提交
85 86 87

      if (tensor_dx) {
        tensor_dx->mutable_data<T>(ctx.GetPlace());
W
wuhuanzhou 已提交
88
        auto y = framework::EigenMatrix<T>::From(*tensor_y);
C
chentianyu03 已提交
89 90 91 92 93 94 95 96 97
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);

        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_y->numel());
        math::ConjFunctor<T> functor(tensor_y->data<T>(), tensor_y->numel(),
                                     tensor_dx->data<T>());
        for_range(functor);
W
wuhuanzhou 已提交
98
        auto dx = framework::EigenMatrix<T>::From(*tensor_dx);
C
chentianyu03 已提交
99 100 101 102 103 104

        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
        tensor_dy->mutable_data<T>(ctx.GetPlace());
W
wuhuanzhou 已提交
105
        auto x = framework::EigenMatrix<T>::From(*tensor_x);
C
chentianyu03 已提交
106 107 108 109 110 111 112 113 114 115
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);

        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_x->numel());
        math::ConjFunctor<T> functor(tensor_x->data<T>(), tensor_x->numel(),
                                     tensor_dy->data<T>());
        for_range(functor);

W
wuhuanzhou 已提交
116
        auto dy = framework::EigenMatrix<T>::From(*tensor_dy);
C
chentianyu03 已提交
117 118 119

        dy.device(dev) = dy * dout.broadcast(size);
      }
S
ShenLiang 已提交
120
    }
C
chentianyu03 已提交
121 122
#else
    const auto* data_dout = tensor_dout->data<T>();
S
ShenLiang 已提交
123 124

    if (tensor_dx) {
C
chentianyu03 已提交
125 126 127 128 129 130 131 132 133 134 135 136
      auto* data_dx = tensor_dx->mutable_data<T>(ctx.GetPlace());
      const auto* data_y = tensor_y->data<T>();
      const framework::DDim& dim = tensor_x->dims();
      size_t N = static_cast<size_t>(framework::product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = T(data_y[i].real, -data_y[i].imag) * data_dout[s];
      }
S
ShenLiang 已提交
137 138 139
    }

    if (tensor_dy) {
C
chentianyu03 已提交
140 141 142 143 144 145 146 147 148 149 150 151
      auto* data_dy = tensor_dy->mutable_data<T>(ctx.GetPlace());
      const auto* data_x = tensor_x->data<T>();
      const framework::DDim& dim = tensor_y->dims();
      size_t N = static_cast<size_t>(framework::product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = T(data_x[i].real, -data_x[i].imag) * data_dout[s];
      }
S
ShenLiang 已提交
152
    }
C
chentianyu03 已提交
153
#endif
S
ShenLiang 已提交
154
  }
C
chentianyu03 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
};

template <typename DeviceContext, typename T>
struct DotGradFunction<DeviceContext, T, math::DisableComplex<T>> {
  void operator()(const Tensor* tensor_x, const Tensor* tensor_y,
                  const Tensor* tensor_dout, Tensor* tensor_dx,
                  Tensor* tensor_dy,
                  const paddle::framework::ExecutionContext& ctx) {
#ifdef __NVCC__
    if (1 == tensor_dout->dims().size()) {
      auto dout = framework::EigenVector<T>::Flatten(*tensor_dout);

      if (tensor_dx) {
        auto y = framework::EigenVector<T>::Flatten(*tensor_y);
        auto dx = framework::EigenVector<T>::Flatten(*tensor_dx);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = framework::EigenVector<T>::Flatten(*tensor_x);
        auto dy = framework::EigenVector<T>::Flatten(*tensor_dy);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());
        dy.device(dev) = x * dout.broadcast(size);
      }
    } else {
W
wuhuanzhou 已提交
185
      auto dout = framework::EigenMatrix<T>::From(*tensor_dout);
C
chentianyu03 已提交
186 187 188

      if (tensor_dx) {
        tensor_dx->mutable_data<T>(ctx.GetPlace());
W
wuhuanzhou 已提交
189 190
        auto y = framework::EigenMatrix<T>::From(*tensor_y);
        auto dx = framework::EigenMatrix<T>::From(*tensor_dx);
C
chentianyu03 已提交
191 192 193 194 195 196 197 198
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        tensor_dy->mutable_data<T>(ctx.GetPlace());
W
wuhuanzhou 已提交
199 200
        auto x = framework::EigenMatrix<T>::From(*tensor_x);
        auto dy = framework::EigenMatrix<T>::From(*tensor_dy);
C
chentianyu03 已提交
201 202 203 204 205 206
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);
        dy.device(dev) = x * dout.broadcast(size);
      }
    }
S
ShenLiang 已提交
207
#else
C
chentianyu03 已提交
208
    const auto* data_dout = tensor_dout->data<T>();
S
ShenLiang 已提交
209

C
chentianyu03 已提交
210 211 212 213 214
    if (tensor_dx) {
      auto* data_dx = tensor_dx->mutable_data<T>(ctx.GetPlace());
      const auto* data_y = tensor_y->data<T>();
      const framework::DDim& dim = tensor_x->dims();
      size_t N = static_cast<size_t>(framework::product(dim));
S
ShenLiang 已提交
215

C
chentianyu03 已提交
216
      auto step = dim[dim.size() - 1];
S
ShenLiang 已提交
217

C
chentianyu03 已提交
218 219 220 221 222
      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = data_y[i] * data_dout[s];
      }
S
ShenLiang 已提交
223 224
    }

C
chentianyu03 已提交
225 226 227 228 229
    if (tensor_dy) {
      auto* data_dy = tensor_dy->mutable_data<T>(ctx.GetPlace());
      const auto* data_x = tensor_x->data<T>();
      const framework::DDim& dim = tensor_y->dims();
      size_t N = static_cast<size_t>(framework::product(dim));
S
ShenLiang 已提交
230

C
chentianyu03 已提交
231
      auto step = dim[dim.size() - 1];
S
ShenLiang 已提交
232

C
chentianyu03 已提交
233 234 235 236 237
      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = data_x[i] * data_dout[s];
      }
S
ShenLiang 已提交
238 239
    }
#endif
C
chentianyu03 已提交
240 241
  }
};
S
ShenLiang 已提交
242

L
liuwei1031 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
template <typename DeviceContext, typename T>
class DotKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_out = ctx.Output<Tensor>("Out");
    tensor_out->mutable_data<T>(ctx.GetPlace());

#ifdef __NVCC__
    if (1 == tensor_out->dims().size()) {
      auto out = framework::EigenScalar<T>::From(*tensor_out);
      auto x = framework::EigenVector<T>::Flatten(*tensor_x);
      auto y = framework::EigenVector<T>::Flatten(*tensor_y);

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum();
    } else {
W
wuhuanzhou 已提交
261 262 263
      auto out = framework::EigenMatrix<T>::From(*tensor_out);
      auto x = framework::EigenMatrix<T>::From(*tensor_x);
      auto y = framework::EigenMatrix<T>::From(*tensor_y);
L
liuwei1031 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum(Eigen::DSizes<int, 1>(1));
    }
#else
    const auto* data_x = tensor_x->data<T>();
    const auto* data_y = tensor_y->data<T>();
    auto* data_out = tensor_out->data<T>();

    auto x_dims = tensor_x->dims();
    auto step = x_dims[x_dims.size() - 1];
    int size = static_cast<int>(framework::product(x_dims));

    for (int ind = -1, j = 0; j < size; ++j) {
      if (j % step == 0) {
        ++ind;
        data_out[ind] = data_x[j] * data_y[j];
      } else {
        data_out[ind] += data_x[j] * data_y[j];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
class DotGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* tensor_dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* tensor_dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    if (tensor_dx) tensor_dx->mutable_data<T>(ctx.GetPlace());
    if (tensor_dy) tensor_dy->mutable_data<T>(ctx.GetPlace());

C
chentianyu03 已提交
302 303
    DotGradFunction<DeviceContext, T>()(tensor_x, tensor_y, tensor_dout,
                                        tensor_dx, tensor_dy, ctx);
L
liuwei1031 已提交
304 305 306 307 308
  }
};

}  // namespace operators
}  // namespace paddle