test_svd_op.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
from gradient_checker import grad_check
from decorator_helper import prog_scope


class TestSvdOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.generate_input()
        self.generate_output()
        self.op_type = "svd"
        assert (hasattr(self, "_output_data"))
        self.inputs = {"X": self._input_data}
        self.attrs = {'full_matrices': self.get_full_matrices_option()}
        self.outputs = {
            "U": self._output_data[0],
            "S": self._output_data[1],
            "VH": self._output_data[2]
        }

    def generate_input(self):
        """ return a input_data and input_shape
        """
        self._input_shape = (100, 1)
        self._input_data = np.random.random(self._input_shape).astype("float64")

    def get_full_matrices_option(self):
        return False

    def generate_output(self):
        assert (hasattr(self, "_input_data"))
        self._output_data = np.linalg.svd(self._input_data)

    def test_check_output(self):
        self.check_output(no_check_set=['U', 'VH'])

    def test_svd_forward(self):
        """ u matmul diag(s) matmul vt must become X
        """
        single_input = self._input_data.reshape(
            [-1, self._input_shape[-2], self._input_shape[-1]])[0]
        paddle.disable_static()
        dy_x = paddle.to_tensor(single_input)
        dy_u, dy_s, dy_vt = paddle.linalg.svd(dy_x)
        dy_out_x = dy_u.matmul(paddle.diag(dy_s)).matmul(dy_vt)
        if (paddle.abs(dy_out_x - dy_x) < 1e-7).all():
            ...
        else:
            print("EXPECTED:\n", dy_x)
            print("GOT     :\n", dy_out_x)
            raise RuntimeError("Check SVD Failed")
        paddle.enable_static()

    def check_S_grad(self):
        self.check_grad(['X'], ['S'], numeric_grad_delta=0.001)

    def check_U_grad(self):
        self.check_grad(['X'], ['U'], numeric_grad_delta=0.001)

    def check_V_grad(self):
        self.check_grad(['X'], ['VH'], numeric_grad_delta=0.001)

    def test_check_grad(self):
        """ 
        remember the input matrix must be the full rank matrix, otherwise the gradient will stochatic because the u / v 's  (n-k) freedom  vectors
        """
        self.check_S_grad()
        self.check_U_grad()
        self.check_V_grad()


class TestSvdCheckGrad2(TestSvdOp):
    # NOTE(xiongkun03): because we want to construct some full rank matrics,
    #                   so we can't specifize matrices which numel() > 100

    no_need_check_grad = True

    def generate_input(self):
        """ return a deterministic  matrix, the range matrix; 
            vander matrix must be a full rank matrix.
        """
        self._input_shape = (5, 5)
        self._input_data = np.vander(
            [2, 3, 4, 5, 6]).astype("float64").reshape(self._input_shape)


class TestSvdNormalMatrixSmall(TestSvdCheckGrad2):
    def generate_input(self):
        """ small matrix SVD. 
        """
        self._input_shape = (1, 1)
        self._input_data = np.random.random(self._input_shape).astype("float64")


class TestSvdNormalMatrix6x3(TestSvdCheckGrad2):
    def generate_input(self):
        """ return a deterministic  matrix, the range matrix; 
            vander matrix must be a full rank matrix.
        """
        self._input_shape = (6, 3)
        self._input_data = np.array(
            [[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0],
             [2.0, 4.0, 9.0], [3.0, 6.0, 8.0],
             [3.0, 1.0, 0.0]]).astype("float64")


class TestSvdNormalMatrix3x6(TestSvdCheckGrad2):
    def generate_input(self):
        """ return a deterministic  matrix, the range matrix; 
            vander matrix must be a full rank matrix.
        """
        self._input_shape = (3, 6)
        self._input_data = np.array(
            [[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0],
             [2.0, 4.0, 9.0], [3.0, 6.0, 8.0],
             [3.0, 1.0, 0.0]]).astype("float64")
        self._input_data = self._input_data.transpose((-1, -2))


class TestSvdNormalMatrix6x3Batched(TestSvdOp):
    def generate_input(self):
        self._input_shape = (10, 6, 3)
        self._input_data = np.array(
            [[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0],
             [2.0, 4.0, 9.0], [3.0, 6.0, 8.0],
             [3.0, 1.0, 0.0]]).astype("float64")
        self._input_data = np.stack([self._input_data] * 10, axis=0)

    def test_svd_forward(self):
        """ test_svd_forward not support batched input, so disable this test.
        """
        pass


class TestSvdNormalMatrix3x6Batched(TestSvdOp):
    def generate_input(self):
        """ return a deterministic  matrix, the range matrix; 
            vander matrix must be a full rank matrix.
        """
        self._input_shape = (10, 3, 6)
        self._input_data = np.array(
            [[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0],
             [2.0, 4.0, 9.0], [3.0, 6.0, 8.0],
             [3.0, 1.0, 0.0]]).astype("float64")
        self._input_data = self._input_data.transpose((-1, -2))
        self._input_data = np.stack([self._input_data] * 10, axis=0)

    def test_svd_forward(self):
        """ test_svd_forward not support batched input, so disable this test.
        """
        pass


class TestSvdNormalMatrix3x3x3x6Batched(TestSvdOp):
    def generate_input(self):
        """ return a deterministic  matrix, the range matrix; 
            vander matrix must be a full rank matrix.
        """
        self._input_shape = (3, 3, 3, 6)
        self._input_data = np.array(
            [[1.0, 2.0, 3.0], [0.0, 1.0, 5.0], [0.0, 0.0, 6.0],
             [2.0, 4.0, 9.0], [3.0, 6.0, 8.0],
             [3.0, 1.0, 0.0]]).astype("float64")
        self._input_data = self._input_data.transpose((-1, -2))
        self._input_data = np.stack(
            [self._input_data, self._input_data, self._input_data], axis=0)
        self._input_data = np.stack(
            [self._input_data, self._input_data, self._input_data], axis=0)

    def test_svd_forward(self):
        """ test_svd_forward not support batched input, so disable this test.
        """
        pass


@skip_check_grad_ci(reason="'check_grad' on large inputs is too slow, " +
                    "however it is desirable to cover the forward pass")
class TestSvdNormalMatrixBig(TestSvdOp):
    def generate_input(self):
        """ big matrix SVD. 
            
        """
        self._input_shape = (2, 200, 300)
        self._input_data = np.random.random(self._input_shape).astype("float64")

    def test_svd_forward(self):
        """ test_svd_forward not support batched input, so disable this test.
        """
        pass

    def test_check_grad(self):
        pass


class TestSvdNormalMatrixBig2(TestSvdOp):
    def generate_input(self):
        """ big matrix SVD. 
        """
        self._input_shape = (1, 100)
        self._input_data = np.random.random(self._input_shape).astype("float64")


class TestSvdNormalMatrixFullMatrices(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()

    def tearDown(self):
        paddle.enable_static()

    def test_full_matrices(self):
        mat_shape = (2, 3)
        mat = np.random.random(mat_shape).astype("float64")
        x = paddle.to_tensor(mat)
        u, s, vh = paddle.linalg.svd(x, full_matrices=True)
        assert (u.shape == [2, 2])
        assert (vh.shape == [3, 3])
        x_recover = u.matmul(paddle.diag(s)).matmul(vh[0:2])
        if ((paddle.abs(x_recover - x) > 1e-4).any()):
            raise RuntimeError("mat can't be recovered\n")


class TestSvdFullMatriceGrad(TestSvdNormalMatrix6x3):
    def get_full_matrices_option(self):
        return True

    def test_svd_forward(self):
        """ test_svd_forward not support full matrices, so disable this test.
        """
        pass

    def test_check_grad(self):
        """ 
        remember the input matrix must be the full rank matrix, otherwise the gradient will stochatic because the u / v 's  (n-k) freedom  vectors
        """
        self.check_S_grad()
        #self.check_U_grad() // don't check U grad, because U have freedom vector
        self.check_V_grad()


class TestSvdAPI(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        a = np.random.rand(5, 5)
        x = paddle.to_tensor(a)
        u, s, vh = paddle.linalg.svd(x)
        gt_u, gt_s, gt_vh = np.linalg.svd(a, full_matrices=False)
        self.assertTrue(np.allclose(s, gt_s))

    def test_static(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                a = np.random.rand(5, 5)
                x = paddle.fluid.data(
                    name="input", shape=[5, 5], dtype='float64')
                u, s, vh = paddle.linalg.svd(x)
                exe = fluid.Executor(place)
                gt_u, gt_s, gt_vh = np.linalg.svd(a, full_matrices=False)
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": a},
                                  fetch_list=[s])
                self.assertTrue(np.allclose(fetches[0], gt_s))


if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()