hybrid_parallel_util.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import six
import numpy as np
import warnings

from paddle import framework
import paddle
from paddle.fluid import core
22
import paddle.distributed as dist
23
from paddle.fluid.dygraph.parallel import _split_tensors, sync_params_buffers, build_groups
24
from collections import OrderedDict
25
from .log_util import logger
26

27 28
__all__ = []

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

def _apply_collective_grads(parameters, comm_group):
    grad_var_set = set()
    grad_vars = []
    sparse_grad_vars = []

    for param in parameters:
        if param.trainable and (param._grad_ivar() is not None):
            g_var = param._grad_ivar()
            assert not g_var._is_sparse(
            ), "Now, it doesn't support sparse parameters"
            grad_vars.append(g_var)
            assert g_var not in grad_var_set
            grad_var_set.add(g_var)

44
    coalesced_grads_and_vars = build_groups(grad_vars, 128 * 1024 * 1024)
45 46 47

    for coalesced_grad, _, _ in coalesced_grads_and_vars:
        # need to div nranks
48 49 50
        nranks = dist.get_world_size(
        ) if comm_group is None else comm_group.nranks
        div_factor = paddle.to_tensor(nranks, dtype=coalesced_grad.dtype)
51 52 53 54 55 56 57
        paddle.fluid.framework._dygraph_tracer().trace_op(
            type="elementwise_div",
            inputs={'X': coalesced_grad,
                    'Y': div_factor},
            outputs={'Out': coalesced_grad},
            attrs={'axis': -1})

58 59 60 61 62
        paddle.distributed.all_reduce(coalesced_grad, group=comm_group)

    _split_tensors(coalesced_grads_and_vars)


63
def _broadcast_data_help(data, shape, dtype, hcg):
64 65
    model_parallel_group = hcg.get_model_parallel_group()
    src_rank = hcg.get_model_parallel_group_src_rank()
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    mp_rank = hcg.get_model_parallel_rank()

    shape_gpu = paddle.to_tensor(shape, dtype="int32")
    paddle.distributed.broadcast(
        shape_gpu,
        src=src_rank,
        group=model_parallel_group,
        use_calc_stream=True)

    if mp_rank != 0:
        input_data = paddle.zeros(shape_gpu, dtype=dtype)
    else:
        input_data = data

    paddle.distributed.broadcast(
        input_data,
        src=src_rank,
        group=model_parallel_group,
        use_calc_stream=True)
85

86 87 88 89

def broadcast_input_data(hcg, *inputs, **kwargs):
    for v in inputs:
        if isinstance(v, core.VarBase):
90
            with framework.no_grad():
91
                _broadcast_data_help(v, v.shape, v.dtype, hcg)
92
        else:
93
            logger.error("it doesn't support data type {}".format(type(v)))
94 95 96 97

    for k, v in kwargs.items():
        if isinstance(v, core.VarBase):
            with framework.no_grad():
98
                _broadcast_data_help(v, v.shape, v.dtype, hcg)
99 100
            kwargs[k] = v
        else:
101
            logger.error("it doesn't support data type {}".format(type(v)))
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    return inputs, kwargs


def broadcast_mp_parameters(model, hcg):
    model_parallel_group = hcg.get_model_parallel_group()
    src_rank = hcg.get_model_parallel_group_src_rank()
    sync_params_buffers(
        model, model_parallel_group, src_rank, is_model_parallel=True)


def broadcast_dp_parameters(model, hcg):
    data_parallel_group = hcg.get_data_parallel_group()
    src_rank = hcg.get_data_parallel_group_src_rank()
    sync_params_buffers(
        model, data_parallel_group, src_rank, is_model_parallel=False)


def fused_allreduce_gradients(parameter_list, hcg):
120
    data_parallel_group = None if hcg is None else hcg.get_data_parallel_group()
121
    logger.debug("dp start fuse allreduce gradients")
122 123
    with framework.no_grad():
        _apply_collective_grads(parameter_list, data_parallel_group)
J
JZ-LIANG 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166


def sharding_reduce_gradients(parameter_list, hcg):
    # TODO allreduce --> reduce
    # TODO merge grad / nrank with dp 
    logger.debug("sharding start gradients sync")
    with framework.no_grad():

        sharding_nrank = hcg.get_sharding_parallel_group().nranks
        for param in parameter_list:
            if param.trainable and (param._grad_ivar() is not None):

                g_var = param._grad_ivar()

                # need use trace_op to allreduce 
                # paddle.distributed.all_reduce(
                #     g_var, group=hcg.get_sharding_parallel_group(), use_calc_stream=True)
                paddle.fluid.framework._dygraph_tracer().trace_op(
                    type="c_allreduce_sum",
                    inputs={'X': g_var},
                    outputs={'Out': g_var},
                    attrs={
                        'ring_id': hcg.get_sharding_parallel_group().id,
                        'use_calc_stream': True
                    })

                # grad / sharding_rank
                div_factor = paddle.to_tensor(sharding_nrank, dtype=g_var.dtype)
                paddle.fluid.framework._dygraph_tracer().trace_op(
                    type="elementwise_div",
                    inputs={'X': g_var,
                            'Y': div_factor},
                    outputs={'Out': g_var},
                    attrs={'axis': -1})


def broadcast_sharding_parameters(model, hcg):
    # TODO TO save memory, use un-fused broadcast to avoid potentional OOM
    logger.debug("sharding start init parameters sync")
    sharding_parallel_group = hcg.get_sharding_parallel_group()
    src_rank = hcg.get_sharding_parallel_group_src_rank()
    sync_params_buffers(
        model, sharding_parallel_group, src_rank, is_model_parallel=False)