TensorAssign.h 4.3 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/**
 * TensorAssign.h
 *
 * Author: hedaoyuan (hedaoyuan@baidu.com)
 * Created on: 2016-10-08
 *
 * Copyright (c) Baidu.com, Inc. All Rights Reserved
 *
 */

#pragma once

#include <algorithm>
#include "paddle/utils/Logging.h"

namespace paddle {

template<typename LhsType, typename RhsType, class T>
class TensorAssignOp {
public:
  explicit TensorAssignOp(const LhsType& lhs, const RhsType& rhs)
    : lhs_(lhs), rhs_(rhs) {
    #ifndef __CUDA_ARCH__
      CHECK_EQ(lhs_.getWidth(), rhs_.getWidth());
      CHECK_EQ(lhs_.getHeight(), rhs_.getHeight());
      CHECK_EQ(lhs_.useGpu(), rhs_.useGpu());
    #endif
  }

  INLINE void apply(const int i, const int j) {
    lhs_.applyRef(i, j) = rhs_.apply(i, j);
  }
  INLINE void apply(const int index) {
    lhs_.applyRef(index) = rhs_.apply(index);
  }

  INLINE size_t getWidth() const { return lhs_.getWidth(); }
  INLINE size_t getHeight() const { return rhs_.getHeight(); }
  INLINE bool isContiguous() const {
    return lhs_.isContiguous() && rhs_.isContiguous();
  }
  INLINE bool useGpu() const { return lhs_.useGpu(); }

private:
  TensorApply<LhsType, T> lhs_;
  TensorApply<const RhsType, T> rhs_;
};

template <typename Assign, typename... AssignOp>
void AssignCpuEvaluate(int height, int width, bool isContiguous,
                       Assign&& assign, AssignOp&& ... args) {
  if (isContiguous) {
    int size = height * width;
    for (int index = 0; index < size; index++) {
      assign.apply(index);
      __attribute__((unused)) int dummy[] = { (((args)).apply(index), 0)... };
    }
  } else {
    for (int i = 0; i < height; i++) {
      for (int j = 0; j < width; j++) {
        assign.apply(i, j);
        __attribute__((unused)) int dummy[] = { (((args)).apply(i, j), 0)... };
      }
    }
  }
}

#ifdef __NVCC__
template <typename Assign, typename... AssignOp>
__global__
void AssignGpuEvaluate1(const int border, Assign assign, AssignOp ... args) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < border) {
    assign.apply(idx);
    __attribute__((unused)) int dummy[] = { (((args)).apply(idx), 0)... };
  }
}

template <typename Assign, typename... AssignOp>
__global__
void AssignGpuEvaluate2(const int height, const int width,
                        Assign assign, AssignOp ... args) {
  const int colIdx = blockIdx.x * blockDim.x + threadIdx.x;
  const int rowIdx = blockIdx.y * blockDim.y + threadIdx.y;
  for (int i = rowIdx; i < height; i += gridDim.y * blockDim.y) {
    for (int j = colIdx; j < width; j += gridDim.x * blockDim.x) {
      assign.apply(i, j);
      __attribute__((unused)) int dummy[] = { (((args)).apply(i, j), 0)... };
    }
  }
}
#endif

// At least one assignment expression is required
template <typename Assign, typename... AssignOp>
void AssignEvaluate(Assign&& assign, AssignOp&& ... args) {
  const bool useGpu_ = assign.useGpu();
  bool isContiguous_ = assign.isContiguous();
  const size_t height = assign.getHeight();
  const size_t width = assign.getWidth();

  const int packSize = sizeof...(args);
  const bool packUseGpu[] = { ((args)).useGpu()... };
  const bool packIsContiguous[] = { ((args)).isContiguous()... };
  const size_t packHeight[] = { ((args)).getHeight()... };
  const size_t packWidth[] = { ((args)).getWidth()... };

  for (int i = 0; i < packSize; i++) {
    CHECK_EQ(useGpu_, packUseGpu[i]);
    CHECK_EQ(height, packHeight[i]);
    CHECK_EQ(width, packWidth[i]);
    isContiguous_  = isContiguous_ && packIsContiguous[i];
  }

  if (useGpu_) {
#ifdef __NVCC__
    if (isContiguous_) {
      int size = height * width;
      int blockSize = size <= 1024 ? size : 1024;
      int gridSize = (size + 1024 - 1) / 1024;
      AssignGpuEvaluate1
        <<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(size, assign, args...);
    } else {
      int blockSizeY = std::min(32, (int)height);
      int blockSizeX = (32 / blockSizeY) * 32;
      int gridSizeX = std::min(32, (int)(width + blockSizeX - 1) / blockSizeX);
      int gridSizeY = std::min(32, (int)(height + blockSizeY - 1) / blockSizeY);
      dim3 threads(blockSizeX, blockSizeY);
      dim3 grid(gridSizeX, gridSizeY);
      AssignGpuEvaluate2
        <<<grid, threads, 0, STREAM_DEFAULT>>>(height, width, assign, args...);
    }

    CHECK_SYNC("AssignEvaluate failed");
#endif
  } else {
    AssignCpuEvaluate(height, width, isContiguous_, assign, args...);
  }
}

}  // namespace paddle