interpolate_op.cc 20.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/interpolate_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
15 16 17 18 19 20 21
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;
22
using DataLayout = framework::DataLayout;
23

K
Kaipeng Deng 已提交
24 25 26 27 28
static void Interpolate2DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

  PADDLE_ENFORCE(
X
xiaoting 已提交
29 30
      "bilinear" == interp_method || "nearest" == interp_method ||
          "bicubic" == interp_method,
K
Kaipeng Deng 已提交
31 32
      "Interpolation method can only be \"bilinear\" or \"nearest\" when "
      "Input(X) dimension is 4");
33 34
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
K
Kaipeng Deng 已提交
35

36 37 38 39 40 41 42 43 44
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
        inputs_name.size(), 2,
        "Input(SizeTensor)'size of Op(interpolate) must be 2. "
        "Attr(out_shape)'s length must be 2 for 4-D input tensor.");
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
45 46 47 48 49 50 51
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_h, out_w, dim_x[3]};
    }
    ctx->SetOutputDim("Out", dim_out);
52 53 54 55

    return;
  }

K
Kaipeng Deng 已提交
56
  int out_h, out_w;
57 58 59 60 61 62
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(scale_tensor.size(), 1,
                      "Scale's dimension size must be 1.");
    out_h = -1;
    out_w = -1;
K
Kaipeng Deng 已提交
63
  } else {
64 65 66
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
      // round down
67 68 69 70 71 72
      out_h = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[2] * scale)
                   : static_cast<int>(dim_x[1] * scale));
      out_w = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[3] * scale)
                   : static_cast<int>(dim_x[2] * scale));
73 74 75 76 77 78 79
      // protect when input shape is -1
      out_h = out_h > 0 ? out_h : -1;
      out_w = out_w > 0 ? out_w : -1;
    } else {
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
K
Kaipeng Deng 已提交
80 81 82 83 84 85 86 87 88 89 90
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
    PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                      "OutSize's dimension size must be 1");
    PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
    ctx->ShareLoD("X", "Out");
    return;
  }

91 92 93 94 95 96 97
  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_h, out_w};
  } else {
    dim_out = {dim_x[0], out_h, out_w, dim_x[3]};
  }
  ctx->SetOutputDim("Out", dim_out);
K
Kaipeng Deng 已提交
98 99 100 101 102 103 104 105 106
}

static void Interpolate3DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

  PADDLE_ENFORCE("trilinear" == interp_method,
                 "Interpolation method can only be \"trilinear\" when Input(X) "
                 "dimension is 5");
107 108
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_layout"));
K
Kaipeng Deng 已提交
109

110 111 112 113 114 115 116 117 118 119
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
        inputs_name.size(), 3,
        "Input(SizeTensor)'s size of Op(interpolate) must be 3. "
        "Attr(out_shape)'s length must be 3 for 5-D input tensor.");
    int out_d = ctx->Attrs().Get<int>("out_d");
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
120 121 122 123 124 125 126
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_d, out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_d, out_h, out_w, dim_x[4]};
    }
    ctx->SetOutputDim("Out", dim_out);
127 128 129 130

    return;
  }

K
Kaipeng Deng 已提交
131
  int out_d, out_h, out_w;
132 133 134 135 136 137 138
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(scale_tensor.size(), 1,
                      "Scale's dimension size must be 1");
    out_d = -1;
    out_h = -1;
    out_w = -1;
K
Kaipeng Deng 已提交
139
  } else {
140 141 142
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
      // round down
143 144 145 146 147 148 149 150 151
      out_d = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[2] * scale)
                   : static_cast<int>(dim_x[1] * scale));
      out_h = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[3] * scale)
                   : static_cast<int>(dim_x[2] * scale));
      out_w = (data_layout == DataLayout::kNCHW
                   ? static_cast<int>(dim_x[4] * scale)
                   : static_cast<int>(dim_x[3] * scale));
152 153 154 155 156 157 158 159 160
      // protect when input shape is -1
      out_d = out_d > 0 ? out_d : -1;
      out_h = out_h > 0 ? out_h : -1;
      out_w = out_w > 0 ? out_w : -1;
    } else {
      out_d = ctx->Attrs().Get<int>("out_d");
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
K
Kaipeng Deng 已提交
161 162 163 164 165 166 167 168 169 170 171
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
    PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                      "OutSize's dimension size must be 1");
    PADDLE_ENFORCE_EQ(out_size_dim[0], 3, "OutSize's dim[0] must be 3");
    ctx->ShareLoD("X", "Out");
    return;
  }

172 173 174 175 176 177 178
  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_d, out_h, out_w};
  } else {
    dim_out = {dim_x[0], out_d, out_h, out_w, dim_x[4]};
  }
  ctx->SetOutputDim("Out", dim_out);
K
Kaipeng Deng 已提交
179 180
}

181
class InterpolateOp : public framework::OperatorWithKernel {
182 183 184 185 186 187
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
188
                   "Input(X) of InterpolateOp should not be null.");
189
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
190 191
                   "Output(Out) of InterpolationOp should not be null.");

192
    auto dim_x = ctx->GetInputDim("X");  // NCHW format
K
Kaipeng Deng 已提交
193 194 195 196 197 198 199 200 201
    PADDLE_ENFORCE(dim_x.size() == 4 || dim_x.size() == 5,
                   "Input(X) dimension must be 4 or 5");

    if (dim_x.size() == 4) {
      // shape check for 2D interpolate for input tensor shape NCHW
      Interpolate2DInferShapeCheck(ctx);
    } else {  // dim_x.size() == 5
      // shape check for 3D interpolate for input tensor shape NCDHW
      Interpolate3DInferShapeCheck(ctx);
202 203 204 205 206 207
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
208 209
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
210
  }
211 212 213 214 215 216 217 218 219 220

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
221 222
};

223
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
224 225 226
 public:
  void Make() override {
    AddInput("X",
227
             "The input tensor of interpolate operator, "
K
Kaipeng Deng 已提交
228 229
             "This is a 4-D tensor with shape of [N, C, H, W] or a "
             "5-D tensor with shape of [N, C, D, H, W].");
230
    AddInput("OutSize",
231
             "This is a 1-D tensor with two numbers to specify output size. "
K
Kaipeng Deng 已提交
232 233
             "It should be [output_height, output_width] when input is a 4-D "
             "tensor and should be [output_depth, output_height, output_width] "
234 235 236 237 238 239 240 241 242 243 244 245 246
             "when input is a 5-D tensor. It has a higher priority than "
             "the attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDispensable();
    AddInput("SizeTensor",
             "(vector<Tensor<int32>>, optional). If provided, interpolate will "
             "use this. The shape of the tensor in vector MUST BE [1]. "
             "It has the highest priority compare with Input(OutSize) and "
             "attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDuplicable()
        .AsDispensable();
    AddInput("Scale",
             "This is a 1-D tensor with one number to specify output scale. "
             "It has the higher priority compare with attr(scale).")
247
        .AsDispensable();
248 249
    AddOutput("Out",
              "The output tensor of interpolate operator, "
K
Kaipeng Deng 已提交
250
              "This is a tensor in same rank with Input(X).");
251

252 253 254 255 256 257 258
    AddAttr<std::string>(
        "data_layout",
        "(string, default NCHW) Only used in "
        "an optional string from: \"NHWC\", \"NCHW\". "
        "Specify that the data format of the input and output data is "
        "channel_first or channel_last.")
        .SetDefault("NCHW");
K
Kaipeng Deng 已提交
259 260 261
    AddAttr<int>("out_d", "output depth of interpolate op.").SetDefault(0);
    AddAttr<int>("out_h", "output height of interpolate op.").SetDefault(0);
    AddAttr<int>("out_w", "output width of interpolate op.").SetDefault(0);
D
dengkaipeng 已提交
262
    AddAttr<float>("scale", "scale factor of interpolate op.").SetDefault(0.);
263 264 265
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"bilinear\" for "
K
Kaipeng Deng 已提交
266 267
                         "bilinear interpolation, \"trilinear\" for trilinear "
                         "interpolation and \"nearest\" for nearest "
X
xiaoting 已提交
268 269
                         "neighbor interpolation, and \"bicubic\" for bicubic"
                         "interpolation.")
270
        .SetDefault("bilinear");
271 272
    AddAttr<bool>(
        "align_corners",
T
Tink_Y 已提交
273
        "an optional bool. Defaults to True. "
274 275
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
T
Tink_Y 已提交
276
        "If False, are not aligned")
277 278
        .SetDefault(true);
    AddAttr<int>("align_mode",
T
Tink_Y 已提交
279
                 "(int, default \'1\'), optional for bilinear interpolation, "
T
tink2123 已提交
280 281
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
T
tink2123 已提交
282
        .SetDefault(1);
283
    AddComment(R"DOC(
284 285 286 287 288
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
          for nearest neighbor interpolation and \"bilinear\" for bilinear 
          interpolation.

289
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
290
          in both the 3rd dimension(in height direction) and the 4th dimension(in width 
291 292
          direction) on input tensor.
            
293 294 295 296 297 298
          Bilinear interpolation is an extension of linear interpolation for 
          interpolating functions of two variables (e.g. H-direction and 
          W-direction in this op) on a rectilinear 2D grid. The key idea is 
          to perform linear interpolation first in one direction, and then 
          again in the other direction.

K
Kaipeng Deng 已提交
299 300 301 302 303
          Trilinear interpolation is an extension of linear interpolation for 
          interpolating functions of three variables (e.g. D-direction, 
          H-direction and W-direction in this op) on a rectilinear 3D grid. 
          The linear interpolation is performed on three directions.

X
xiaoting 已提交
304 305 306 307 308
          Bicubic interpolation is an extension of cubic interpolation for interpolating
          data points on a two-dimensional regular grid. The interpolated surface is
          smoother than corresponding surfaces obtained by bilinear interpolation or
          nearest-neighbor interpolation.

T
tianshuo78520a 已提交
309
          Align_corners and align_mode are optional parameters,the calculation method 
310 311 312 313
          of interpolation can be selected by them.
          
          Example:

T
tink2123 已提交
314
          For scale:
315 316 317 318 319 320 321 322 323 324 325 326
          
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
            
            else:
              
              scale_{factor} = float(in_{size}/out_{size})
            
          
          Nearest neighbor interpolation:
          
T
tink2123 已提交
327
          if:
328 329 330 331 332 333 334 335
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
336
          else:
337 338 339 340 341 342 343 344 345 346
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

T
tink2123 已提交
347
          if:
348 349 350 351 352 353 354 355 356
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
357
          else:
358 359 360 361 362 363 364
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

K
Kaipeng Deng 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
          Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
X
xiaoting 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399

          Bicubic interpolation:

          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
400

401
          For details of nearest neighbor interpolation, please refer to Wikipedia: 
402
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
403 404 405

          For details of bilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Bilinear_interpolation
K
Kaipeng Deng 已提交
406 407 408

          For details of trilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Trilinear_interpolation
X
xiaoting 已提交
409 410 411

          For details of bicubic interpolation, please refer to Wikipedia:
          https://en.wikipedia.org/wiki/Bicubic_interpolation
412 413 414 415
         )DOC");
  }
};

416
class InterpolateOpGrad : public framework::OperatorWithKernel {
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
433 434 435
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
436
  }
437 438 439 440 441 442 443 444 445 446

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
447 448
};

H
hong 已提交
449 450
template <typename T>
class InterpolateGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
451
 public:
H
hong 已提交
452
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
453 454

 protected:
455
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
456 457 458 459
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    if (this->HasInput("SizeTensor") > 0) {
      op->SetInput("SizeTensor", this->Input("SizeTensor"));
460
    }
H
hong 已提交
461 462
    if (this->HasInput("OutSize") > 0) {
      op->SetInput("OutSize", this->Input("OutSize"));
S
sneaxiy 已提交
463
    }
H
hong 已提交
464 465
    if (this->HasInput("Scale") > 0) {
      op->SetInput("Scale", this->Input("Scale"));
466
    }
H
hong 已提交
467 468 469
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
470 471 472
  }
};

473 474
DECLARE_NO_NEED_BUFFER_VARS_INFERER(InterpolateGradNoNeedBufferVarsInference,
                                    "X");
S
sneaxiy 已提交
475

476 477 478 479
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
480
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
H
hong 已提交
481 482
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
S
sneaxiy 已提交
483 484
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
485
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
H
hong 已提交
486 487
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
S
sneaxiy 已提交
488 489
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
K
Kaipeng Deng 已提交
490
REGISTER_OPERATOR(trilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
H
hong 已提交
491 492
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
K
Kaipeng Deng 已提交
493 494
REGISTER_OPERATOR(trilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
X
xiaoting 已提交
495 496 497 498 499
REGISTER_OPERATOR(bicubic_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
                  ops::InterpolateGradMaker<paddle::framework::OpDesc>,
                  ops::InterpolateGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(bicubic_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
500 501 502 503 504 505
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
506 507
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
508
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
509
                       ops::InterpolateGradKernel<double>);
K
Kaipeng Deng 已提交
510 511 512 513 514
REGISTER_OP_CPU_KERNEL(trilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(trilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
X
xiaoting 已提交
515 516 517 518
REGISTER_OP_CPU_KERNEL(bicubic_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>);
REGISTER_OP_CPU_KERNEL(bicubic_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);