vol2col.cu 11.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/vol2col.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

template <class T>
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
C
chengduoZH 已提交
24 25 26 27 28 29
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
                        int output_width, T* data_col) {
C
chengduoZH 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    int w_out = index % output_width;
    int h_out = (index / output_width) % output_height;
    int d_out = (index / output_width / output_height) % output_detph;
    int channel_in = index / output_width / output_height / output_detph;
    int channel_out = channel_in * filter_depth * filter_height * filter_width;
    int w_in = w_out * stride_width - padding_width;
    int h_in = h_out * stride_height - padding_height;
    int d_in = d_out * stride_depth - padding_depth;

    data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
                    output_width +
                w_out;
    data_vol += ((channel_in * depth + d_in) * height + h_in) * width + w_in;
    for (int k = 0; k < filter_depth; ++k) {
      for (int i = 0; i < filter_height; ++i) {
        for (int j = 0; j < filter_width; ++j) {
C
chengduoZH 已提交
48 49 50 51 52
          int d = d_in + k * dilation_d;
          int h = h_in + i * dilation_h;
          int w = w_in + j * dilation_w;
          int col_idx = (k * dilation_d * height + i * dilation_h) * width +
                        j * dilation_w;
C
chengduoZH 已提交
53 54
          *data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
                       w < width)
C
chengduoZH 已提交
55
                          ? data_vol[col_idx]
C
chengduoZH 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
                          : 0;
          data_col += output_detph * output_height * output_width;
        }
      }
    }
  }
}

/*
 * im = [input_channels,intpu_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
class Vol2ColFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& vol, framework::Tensor& col,
C
chengduoZH 已提交
75
                  int dilation_d, int dilation_h, int dilation_w,
C
chengduoZH 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
                  int stride_depth, int stride_height, int stride_width,
                  int padding_depth, int padding_height,
                  int padding_width) const {
    PADDLE_ENFORCE(vol.dims().size() == 4);
    PADDLE_ENFORCE(col.dims().size() == 7);

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

C
chengduoZH 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    PADDLE_ENFORCE_EQ((input_depth + 2 * padding_depth -
                       ((dilation_d * (filter_depth - 1) + 1))) /
                              stride_depth +
                          1,
                      output_depth,
                      "input_depth and output_depth are "
                      "Mismatching.");
    PADDLE_ENFORCE_EQ((input_height + 2 * padding_height -
                       ((dilation_h * (filter_height - 1) + 1))) /
                              stride_height +
                          1,
                      output_height,
                      "input_height and output_height are "
                      "Mismatching.");
    PADDLE_ENFORCE_EQ((input_width + 2 * padding_width -
                       ((dilation_w * (filter_width - 1) + 1))) /
                              stride_width +
                          1,
                      output_width,
                      "input_width and output_width are "
                      "Mismatching.");

C
chengduoZH 已提交
115 116 117 118 119 120 121 122 123
    int num_outputs =
        input_channels * output_depth * output_height * output_width;

    const int threads = 1024;
    const int blocks = (num_outputs + 1024 - 1) / 1024;
    vol2col<T><<<blocks, threads, 0,
                 reinterpret_cast<const platform::CUDADeviceContext&>(context)
                     .stream()>>>(
        num_outputs, vol.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
124 125 126 127
        dilation_d, dilation_h, dilation_w, filter_depth, filter_height,
        filter_width, stride_depth, stride_height, stride_width, padding_depth,
        padding_height, padding_width, output_depth, output_height,
        output_width, col.data<T>());
C
chengduoZH 已提交
128 129 130 131 132
  }
};

template <class T>
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
C
chengduoZH 已提交
133 134 135 136 137 138 139 140 141 142
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
                        int output_width, T* data_vol) {
  const int d_filter_depth = dilation_d * (filter_depth - 1) + 1;
  const int d_filter_height = dilation_h * (filter_height - 1) + 1;
  const int d_filter_width = dilation_w * (filter_width - 1) + 1;

C
chengduoZH 已提交
143 144 145 146 147 148 149
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    T src_val = 0;
    int w = index % width + padding_width;
    int h = (index / width) % height + padding_height;
    int d = (index / width / height) % depth + padding_depth;
    int c = index / width / height / depth;
C
chengduoZH 已提交
150

C
chengduoZH 已提交
151 152
    // compute the start and end of the output
    int w_col_start =
C
chengduoZH 已提交
153
        (w < d_filter_width) ? 0 : (w - d_filter_width) / stride_width + 1;
C
chengduoZH 已提交
154 155
    int w_col_end = min(w / stride_width + 1, output_width);
    int h_col_start =
C
chengduoZH 已提交
156
        (h < d_filter_height) ? 0 : (h - d_filter_height) / stride_height + 1;
C
chengduoZH 已提交
157 158
    int h_col_end = min(h / stride_height + 1, output_height);
    int d_col_start =
C
chengduoZH 已提交
159
        (d < d_filter_depth) ? 0 : (d - d_filter_depth) / stride_depth + 1;
C
chengduoZH 已提交
160 161 162 163 164
    int d_col_end = min(d / stride_depth + 1, output_detph);

    for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
C
chengduoZH 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
          int d_off = (d - d_col * stride_depth);
          int h_off = (h - h_col * stride_height);
          int w_off = (w - w_col * stride_width);
          if (d_off % dilation_d == 0 && h_off % dilation_h == 0 &&
              w_off % dilation_w == 0) {
            d_off /= dilation_d;
            h_off /= dilation_h;
            w_off /= dilation_w;

            int data_col_index =
                (((((c * filter_depth + d_off) * filter_height + h_off) *
                       filter_width +
                   w_off) *
                      output_detph +
                  d_col) *
                     output_height +
                 h_col) *
                    output_width +
                w_col;
            src_val += data_col[data_col_index];
          }
C
chengduoZH 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        }
      }
    }
    data_vol[index] = src_val;
  }
}

/*
 * im = [input_channels, input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
class Col2VolFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::Tensor& vol, const framework::Tensor& col,
C
chengduoZH 已提交
204
                  int dilation_d, int dilation_h, int dilation_w,
C
chengduoZH 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
                  int stride_depth, int stride_height, int stride_width,
                  int padding_depth, int padding_height,
                  int padding_width) const {
    PADDLE_ENFORCE(vol.dims().size() == 4);
    PADDLE_ENFORCE(col.dims().size() == 7);

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

C
chengduoZH 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    PADDLE_ENFORCE_EQ((input_depth + 2 * padding_depth -
                       ((dilation_d * (filter_depth - 1) + 1))) /
                              stride_depth +
                          1,
                      output_depth,
                      "input_depth and output_depth are "
                      "Mismatching.");
    PADDLE_ENFORCE_EQ((input_height + 2 * padding_height -
                       ((dilation_h * (filter_height - 1) + 1))) /
                              stride_height +
                          1,
                      output_height,
                      "input_height and output_height are "
                      "Mismatching.");
    PADDLE_ENFORCE_EQ((input_width + 2 * padding_width -
                       ((dilation_w * (filter_width - 1) + 1))) /
                              stride_width +
                          1,
                      output_width,
                      "input_width and output_width are "
                      "Mismatching.");

C
chengduoZH 已提交
244 245 246 247 248 249 250 251 252
    int num_kernels = input_channels * input_depth * input_height * input_width;

    const int threads = 1024;
    const int blocks = (num_kernels + 1024 - 1) / 1024;

    col2vol<T><<<blocks, threads, 0,
                 reinterpret_cast<const platform::CUDADeviceContext&>(context)
                     .stream()>>>(
        num_kernels, col.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
253 254 255 256
        dilation_d, dilation_h, dilation_w, filter_depth, filter_height,
        filter_width, stride_depth, stride_height, stride_width, padding_depth,
        padding_height, padding_width, output_depth, output_height,
        output_width, vol.data<T>());
C
chengduoZH 已提交
257 258 259 260 261 262 263 264 265 266 267
  }
};

template class Vol2ColFunctor<platform::GPUPlace, float>;
template class Vol2ColFunctor<platform::GPUPlace, double>;
template class Col2VolFunctor<platform::GPUPlace, float>;
template class Col2VolFunctor<platform::GPUPlace, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle