requantize_mkldnn_op.cc 4.1 KB
Newer Older
X
xiaolil1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iterator>  // NOLINT
16
#include "dnnl.hpp"  // NOLINT
X
xiaolil1 已提交
17 18 19
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/requantize_op.h"
20 21
#include "paddle/phi/backends/onednn/onednn_helper.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
X
xiaolil1 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27
using dnnl::memory;
using dnnl::reorder;
28
using Tensor = phi::DenseTensor;
X
xiaolil1 已提交
29

30 31 32 33 34 35 36 37
namespace {

inline uint8_t clip_to_uint8(float x) {
  return std::max(0L, std::min(255L, std::lround(x)));
}

}  // namespace

X
xiaolil1 已提交
38 39 40 41
template <typename T>
class ReQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
42
    auto* input = ctx.Input<phi::DenseTensor>("Input");
X
xiaolil1 已提交
43
    auto scale_in = ctx.Attr<float>("Scale_in");
44
    auto shift_in = ctx.Attr<float>("Shift_in");
X
xiaolil1 已提交
45
    auto scale_out = ctx.Attr<float>("Scale_out");
46 47
    auto shift_out = ctx.Attr<float>("Shift_out");
    bool with_shift = shift_in != 0.0f || shift_out != 0.0f;
48
    auto* output = ctx.Output<phi::DenseTensor>("Output");
49

50
    PADDLE_ENFORCE_NE(
51 52
        scale_in,
        0.0f,
53 54
        platform::errors::InvalidArgument("Scale of input cannot be 0.0"));
    PADDLE_ENFORCE_NE(
55 56
        scale_out,
        0.0f,
57
        platform::errors::InvalidArgument("Scale of output cannot be 0.0"));
58 59
    if (shift_in != 0.0f) {
      PADDLE_ENFORCE_EQ(
60 61
          input->dtype(),
          DataType::UINT8,
62 63 64 65
          platform::errors::Unimplemented("Requantize does not support nonzero "
                                          "shift for signed input."));
    }

X
xiaolil1 已提交
66 67 68
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

69
    auto src_tz = phi::vectorize(input->dims());
X
xiaolil1 已提交
70

71 72 73 74 75 76
    auto src_paddle_dt = input->dtype();
    auto dst_paddle_dt = with_shift ? DataType::UINT8 : src_paddle_dt;

    auto xstrides = input->mem_desc().data.format_desc.blocking.strides;
    std::vector<dnnl_dim_t> vstrides(xstrides,
                                     xstrides + input->mem_desc().data.ndims);
77

78 79 80 81 82 83 84 85 86
    dnnl::primitive_attr attrs;
    int mask = 0;
    float reorder_scale = scale_out / scale_in;
    attrs.set_output_scales(mask, {reorder_scale});
    if (with_shift) {
      uint8_t reorder_shift =
          clip_to_uint8(shift_out - reorder_scale * shift_in);
      attrs.set_zero_points(
          DNNL_ARG_DST, mask, {static_cast<int32_t>(reorder_shift)});
87 88
    }

89 90 91 92 93 94 95
    phi::funcs::ReorderOneDNNHandler reorder_handler(
        src_tz,
        src_paddle_dt,
        phi::funcs::ToOneDNNDataType(src_paddle_dt),
        dst_paddle_dt,
        phi::funcs::ToOneDNNDataType(dst_paddle_dt),
        dev_ctx.GetEngine());
96

97 98 99 100 101 102 103 104 105 106
    auto src_memory_p = reorder_handler.AcquireSrcMemory(
        input->mem_desc(), phi::funcs::to_void_cast(input->data<T>()));
    auto dst_memory_p = reorder_handler.AcquireDstMemory(
        output, src_tz, vstrides, dev_ctx.GetPlace());

    auto reorder_p =
        reorder_handler.AcquireReorder(dst_memory_p, src_memory_p, attrs);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *src_memory_p, *dst_memory_p);
107
    astream.wait();
X
xiaolil1 已提交
108

109
    output->set_mem_desc(dst_memory_p->get_desc());
X
xiaolil1 已提交
110 111 112 113 114 115 116 117
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

118 119 120 121 122
REGISTER_OP_KERNEL(requantize,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::ReQuantOpKernel<int8_t>,
                   ops::ReQuantOpKernel<uint8_t>,
123
                   ops::ReQuantOpKernel<paddle::platform::bfloat16>);