test_imperative_partitial_backward.py 2.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18 19

import paddle.fluid as fluid
20
from paddle.fluid.framework import _test_eager_guard
21
import paddle
22 23 24


class TestImperativePartitialBackward(unittest.TestCase):
25
    def func_partitial_backward(self):
26 27 28
        with fluid.dygraph.guard():
            x = np.random.randn(2, 4, 5).astype("float32")
            x = fluid.dygraph.to_variable(x)
29 30
            linear1 = paddle.nn.Linear(5, 10)
            linear2 = paddle.nn.Linear(5, 10)
31

32 33
            y = linear1(x[:, :2])
            z = linear2(x[:, 2:])
34 35 36
            loss = fluid.layers.reduce_mean(y)
            loss.backward()

37
            for param in linear1.parameters():
38
                self.assertIsNotNone(param._grad_ivar())
39

40
            for param in linear2.parameters():
41
                self.assertIsNone(param._grad_ivar())
42

43
            optimizer = fluid.optimizer.AdamOptimizer(
44 45
                parameter_list=(linear1.parameters() + linear2.parameters())
            )
46 47
            _, params_grads = optimizer.minimize(loss)

48 49 50 51
            self.assertListEqual(
                sorted([p.name for p in linear1.parameters()]),
                sorted([p_g[0].name for p_g in params_grads]),
            )
52

53 54
            linear1.clear_gradients()
            linear2.clear_gradients()
55

56 57 58 59 60
    def test_partitial_backward(self):
        with _test_eager_guard():
            self.func_partitial_backward()
        self.func_partitial_backward()

61 62 63

if __name__ == '__main__':
    unittest.main()