io.py 26.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yu Yang 已提交
16
from .. import core
T
typhoonzero 已提交
17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
Y
Yu Yang 已提交
18
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
19 20
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
21
from ..executor import global_scope
Y
yuyang18 已提交
22
from layer_function_generator import generate_layer_fn, templatedoc
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25
__all__ = [
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'open_recordio_file',
F
fengjiayi 已提交
26
    'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Y
yuyang18 已提交
27
    'random_data_generator', 'Preprocessor', 'load'
Y
Yu Yang 已提交
28
]
Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
39
    **Data Layer**
Y
Yu Yang 已提交
40

K
kavyasrinet 已提交
41
    This function takes in the input and based on whether data has
C
caoying03 已提交
42
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
43
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
44
    following operators in the graph.
Y
Yu Yang 已提交
45 46 47 48

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
78
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
79 80 81 82 83
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
84 85
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
86
    return data_var
T
typhoonzero 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

Y
Yancey1989 已提交
118
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
119
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
120
        self.inputs = inputs
T
typhoonzero 已提交
121 122 123
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
124 125
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
126
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
140 141 142 143 144 145 146 147
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
148 149
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
150 151 152

        return params, grads

T
typhoonzero 已提交
153 154 155 156 157 158 159
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
160 161 162 163
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
T
typhoonzero 已提交
164
        empty_block = Program().global_block()
T
typhoonzero 已提交
165 166

        parent_block.append_op(
167
            type='listen_and_serv',
Y
Yancey1989 已提交
168
            inputs={"X": self.inputs},
T
typhoonzero 已提交
169 170 171 172
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
173
                'OptimizeBlock': current_block,
174 175
                'PrefetchBlock': empty_block,
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
176
                'grad_to_block_id': [""]
T
typhoonzero 已提交
177 178 179
            })


T
typhoonzero 已提交
180
def Send(endpoints, send_vars, get_vars=None):
T
typhoonzero 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
196
    endpoints = list(set(epmap))
T
typhoonzero 已提交
197 198

    helper = LayerHelper("Send", **locals())
T
typhoonzero 已提交
199 200 201 202 203
    if not get_vars:
        get_vars = []
        for s in send_vars:
            v = helper.create_tmp_variable(dtype=s.dtype, stop_gradient=True)
            get_vars.append(v)
Y
Yancey1989 已提交
204
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
205

T
typhoonzero 已提交
206 207 208
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
209 210 211 212 213 214 215
        outputs={"Out": get_vars},
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })

T
typhoonzero 已提交
216
    return get_vars
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
245 246


Y
Refine  
Yu Yang 已提交
247 248 249 250 251 252 253 254 255 256
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
257 258
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
259 260 261
    return reader


F
fengjiayi 已提交
262 263 264 265 266
def _copy_reader_var_(block, var, new_name=None):
    if new_name == None:
        new_name = var.name
    new_var = block.create_var(
        name=str(new_name), type=core.VarDesc.VarType.READER)
Y
Yu Yang 已提交
267 268 269
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
270 271 272 273
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
290
    new_op = block.append_op(
F
fengjiayi 已提交
291 292 293
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
294
        attrs=op.all_attrs())
F
fengjiayi 已提交
295
    return new_op
Y
Yu Yang 已提交
296 297


F
fengjiayi 已提交
298 299 300 301 302
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
303
                       for_parallel=True):
F
fengjiayi 已提交
304 305 306 307 308 309 310 311 312 313 314
    """
    Open a RecordIO file

    This layer takes a RecordIO file to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from the given RecordIO file.

    Args:
       filename(str): The RecordIO file's name.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
315
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable via which we can get RecordIO file data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.open_recordio_file(
                                          filename='./data.recordio',
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0],
                                          dtypes=['float32', 'int64'])

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
332
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
333
    """
Y
Yu Yang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
358 359
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
360 361 362 363 364

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

    if for_parallel:
J
JiayiFeng 已提交
365
        main_prog_var = parallel(reader=main_prog_var)
F
fengjiayi 已提交
366

F
fengjiayi 已提交
367
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
368 369


F
fengjiayi 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
    Instead of opening a file and reading data from it, this 
    Reader Variable generates float uniform random data by itself. 
    It can be used as a dummy reader to test a network without 
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.random_data_generator(
                                          low=0.0,
                                          high=1.0,
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0])

         # Via the reader, we can use 'read_file' layer to get data:
         image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var)


437 438 439 440
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yi.wu 已提交
441
               thread_num=1,
F
fengjiayi 已提交
442 443
               buffer_size=None,
               pass_num=1,
F
fengjiayi 已提交
444
               for_parallel=True):
F
fengjiayi 已提交
445 446 447
    """
    Open files

F
fengjiayi 已提交
448 449 450
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
451 452 453 454 455 456 457 458

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
       thread_num(int): The maximal concurrent prefetch thread number.
       buffer_size(int): The size of prefetch buffer.
F
fengjiayi 已提交
459
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
460 461
       for_parallel(Bool): Set it as True if you are going to run 
            subsequent operators in parallel.
F
fengjiayi 已提交
462 463 464 465 466 467 468

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
469
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
470
                                                     './data2.recordio'],
F
fengjiayi 已提交
471 472 473 474 475
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
                                             dtypes=['float32', 'int64'],
                                             thread_num=2,
                                             buffer_size=2)
F
fengjiayi 已提交
476 477

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
478
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
479
    """
480 481
    if buffer_size is None:
        buffer_size = thread_num
F
fengjiayi 已提交
482 483
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
484 485 486 487 488 489 490 491
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
492
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
493
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
494
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
F
fengjiayi 已提交
495 496
    startup_blk.append_op(
        type='open_files',
F
fengjiayi 已提交
497
        outputs={'Out': [startup_reader]},
F
fengjiayi 已提交
498 499 500 501
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
502
            'file_names': filenames,
503 504
            'thread_num': thread_num,
            'buffer_size': buffer_size
F
fengjiayi 已提交
505 506
        })

F
fengjiayi 已提交
507 508 509 510 511 512 513
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
514

F
fengjiayi 已提交
515
    if for_parallel:
J
JiayiFeng 已提交
516
        main_prog_reader = parallel(reader=main_prog_reader)
F
fengjiayi 已提交
517

F
fengjiayi 已提交
518 519 520
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
521
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
522 523 524
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
525
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
526 527 528 529 530
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
531 532 533 534
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
535 536


537 538
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
539 540 541 542 543 544 545 546 547 548
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
549
def shuffle(reader, buffer_size):
550 551
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
552 553


J
JiayiFeng 已提交
554 555 556 557 558
def batch(reader, batch_size):
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


559
def double_buffer(reader, place=None, name=None):
Y
Yu Yang 已提交
560 561 562
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
563 564
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
565 566


F
fengjiayi 已提交
567
def multi_pass(reader, pass_num):
568 569
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
570 571


J
JiayiFeng 已提交
572
def parallel(reader):
J
JiayiFeng 已提交
573 574
    return __create_shared_decorated_reader__('create_threaded_reader', reader,
                                              {})
F
fengjiayi 已提交
575 576


Y
Yu Yang 已提交
577 578 579 580 581
def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
Y
Yu Yang 已提交
582
        for _ in range(len(file_obj.desc.shapes()))
Y
Yu Yang 已提交
583 584 585 586 587 588 589
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634


class Preprocessor(object):
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

    def is_completed(self):
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
        if not self.is_completed():
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
635 636 637 638
        self.source_var_names = [
            unique_name("preprocessor_source")
            for _ in xrange(len(source_shapes))
        ]
F
fengjiayi 已提交
639
        source_vars = []
F
fengjiayi 已提交
640 641 642
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
643
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
644
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)
Y
yi.wu 已提交
695 696


Y
yi.wu 已提交
697 698 699 700
def get_test_program(filelist, program=None, startup_program=None):
    """
    Transpile current train program to a program to read test dataset
    if the program is using reader ops like "open_files_op".
Y
yi.wu 已提交
701
    """
F
fengjiayi 已提交
702 703 704 705 706 707 708 709 710 711 712 713

    def get_test_reader_name(train_reader_name):
        return train_reader_name + "_test"

    def is_reader_op(op):
        block = op.block
        if "Out" in op.output_names:
            reader_out = block.vars[op.output("Out")[0]]
            if reader_out.type == core.VarDesc.VarType.READER:
                return True
        return False

Y
yi.wu 已提交
714
    if program == None:
Y
yi.wu 已提交
715 716 717
        program = default_main_program()
    if startup_program == None:
        startup_program = default_startup_program()
F
fengjiayi 已提交
718
    startup_block = startup_program.global_block()
Y
yi.wu 已提交
719 720

    # 1. find out the orignal reader var name
Y
yi.wu 已提交
721 722
    startup_reader_op_list = []

F
fengjiayi 已提交
723 724
    for op in startup_block.ops:
        if is_reader_op(op):
Y
yi.wu 已提交
725 726 727 728 729 730
            startup_reader_op_list.append(op)

    if len(startup_reader_op_list) == 0:
        return program

    root_reader_op = startup_reader_op_list[0]
F
fengjiayi 已提交
731
    train_test_reader_map = {}
Y
yi.wu 已提交
732 733
    # 2. add operators to startup to read open and read test data files
    for op in startup_reader_op_list:
F
fengjiayi 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        assert (len(op.output("Out")) == 1)
        train_reader_name = op.output("Out")[0]
        train_reader = startup_block.vars[train_reader_name]
        test_reader = _copy_reader_var_(
            startup_block,
            train_reader,
            new_name=get_test_reader_name(train_reader_name))
        train_test_reader_map[train_reader.name] = test_reader

        test_op_inputs = {}
        for name in op.input_names:
            train_arg_names = op.input(name)
            test_arg_vars = []
            for arg_name in train_arg_names:
                arg_var = train_test_reader_map[
                    arg_name] if name == "UnderlyingReader" else startup_block.vars[
                        arg_name]
                test_arg_vars.append(arg_var)
            test_op_inputs[name] = test_arg_vars

        test_op = startup_block.append_op(
Y
yi.wu 已提交
755
            type=op.type,
F
fengjiayi 已提交
756 757
            inputs=test_op_inputs,
            outputs={'Out': [test_reader]},
Y
yi.wu 已提交
758 759 760 761 762 763
            attrs=op.attrs)
        # root reader op's filelist attr for read test files
        if op.type == root_reader_op.type:
            test_op.set_attr("file_names", filelist)
        if op.type == "create_multi_pass_reader":
            test_op.set_attr("pass_num", 1)
Y
yi.wu 已提交
764 765 766

    # 3. rename reader vars in inference program to different name
    #    to avoid read from train data.
F
fengjiayi 已提交
767 768 769 770 771
    main_block = program.global_block()
    for var in main_block.vars.values():
        if var.type == core.VarDesc.VarType.READER:
            main_block.rename_var(
                str(var.name), str(get_test_reader_name(var.name)))
Y
yi.wu 已提交
772

F
fengjiayi 已提交
773 774 775
    for op in main_block.ops:
        if op.type == root_reader_op.type:
            test_op.set_attr("file_names", filelist)
Y
yi.wu 已提交
776
        if op.type == "create_multi_pass_reader":
F
fengjiayi 已提交
777
            test_op.set_attr("pass_num", 1)
Y
yi.wu 已提交
778

F
fengjiayi 已提交
779
    startup_program.sync_with_cpp()
Y
yi.wu 已提交
780
    program.sync_with_cpp()
Y
yi.wu 已提交
781 782

    return program