softmax_op.cc 3.5 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/operators/softmax_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
D
dongzhihong 已提交
25
  void InferShape(const framework::InferShapeContext &ctx) const override {
C
caoying03 已提交
26
    PADDLE_ENFORCE(ctx.Input<Tensor>("logits")->dims().size() == 2UL,
C
caoying03 已提交
27
                   "The input of softmax op must be a matrix.");
C
caoying03 已提交
28
    ctx.Output<Tensor>("softmax")->Resize(ctx.Input<Tensor>("logits")->dims());
29 30 31
  }
};

D
dongzhihong 已提交
32
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
33
 public:
D
dongzhihong 已提交
34 35
  SoftmaxOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
36
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
37
    AddInput("logits",
C
caoying03 已提交
38 39
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
C
caoying03 已提交
40
    AddOutput("softmax", "The normalized values with the same shape as X.");
C
caoying03 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    AddComment(R"DOC(
The input of softmax operator is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1. Specifically, it computes the
exponential of the given dimension and the sum of exponential values of all
the other dimensions in the K-dimensional vector input. Then the ratio of the
exponential of the given dimension and the sum of exponential values of all
the other dimensions is the output of the softmax operator.

For each row `i` and each column `j` in X, we have:
    Y[i, j] = exp(X[i, j]) / sum_j(exp(X[i, j]))

)DOC");
58 59 60
  }
};

D
dongzhihong 已提交
61
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
62 63 64
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

65
 protected:
D
dongzhihong 已提交
66
  void InferShape(const framework::InferShapeContext &ctx) const override {
C
caoying03 已提交
67 68 69 70 71 72 73 74 75 76 77
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("softmax"),
                            "Input(softmax) should be not null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("softmax")),
                            "Input(softmax@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(
        ctx.Input<Tensor>("softmax")->dims(),
        ctx.Input<Tensor>(framework::GradVarName("softmax"))->dims(),
        "Input(softmax) and its gradients should have a same shape.");

    ctx.Output<Tensor>(framework::GradVarName("logits"))
        ->Resize(ctx.Input<Tensor>("logits")->dims());
D
dongzhihong 已提交
78 79 80
  }
};

81 82 83
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
84
namespace ops = paddle::operators;
D
dongzhihong 已提交
85

86 87
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
            ops::SoftmaxOpGrad);
D
dongzhihong 已提交
88 89 90 91
REGISTER_OP_CPU_KERNEL(softmax,
                       ops::SoftmaxKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad, ops::SoftmaxGradKernel<paddle::platform::CPUPlace, float>);