helper.h 4.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
N
nhzlx 已提交
20 21 22
#include <string>
#include <utility>
#include <vector>
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

30 31 32 33
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

34 35 36 37
#define IS_TRT_VERSION_LT(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)

38 39 40 41
#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

42 43 44 45 46 47
#if IS_TRT_VERSION_GE(8000)
#define TRT_NOEXCEPT noexcept
#else
#define TRT_NOEXCEPT
#endif

Y
Yan Chunwei 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60
namespace dy = paddle::platform::dynload;

// TensorRT data type to size
const int kDataTypeSize[] = {
    4,  // kFLOAT
    2,  // kHALF
    1,  // kINT8
    4   // kINT32
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
61
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
62
  return static_cast<nvinfer1::IBuilder*>(
63
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
64
}
65
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
66
  return static_cast<nvinfer1::IRuntime*>(
67
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
68
}
69 70
#if IS_TRT_VERSION_GE(6000)
static nvinfer1::IPluginRegistry* GetPluginRegistry() {
P
Pei Yang 已提交
71 72
  return static_cast<nvinfer1::IPluginRegistry*>(dy::getPluginRegistry());
}
73 74 75
static int GetInferLibVersion() {
  return static_cast<int>(dy::getInferLibVersion());
}
76
#endif
Y
Yan Chunwei 已提交
77 78 79 80

// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
 public:
81 82
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) TRT_NOEXCEPT override {
Y
Yan Chunwei 已提交
83
    switch (severity) {
P
Pei Yang 已提交
84
      case Severity::kVERBOSE:
85
        VLOG(3) << msg;
Y
Yan Chunwei 已提交
86
        break;
P
Pei Yang 已提交
87 88 89
      case Severity::kINFO:
        VLOG(2) << msg;
        break;
Y
Yan Chunwei 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }

  static nvinfer1::ILogger& Global() {
    static nvinfer1::ILogger* x = new NaiveLogger;
    return *x;
  }

107
  ~NaiveLogger() override {}
Y
Yan Chunwei 已提交
108 109
};

N
nhzlx 已提交
110 111 112 113 114
class NaiveProfiler : public nvinfer1::IProfiler {
 public:
  typedef std::pair<std::string, float> Record;
  std::vector<Record> mProfile;

115
  virtual void reportLayerTime(const char* layerName, float ms) TRT_NOEXCEPT {
N
nhzlx 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    auto record =
        std::find_if(mProfile.begin(), mProfile.end(),
                     [&](const Record& r) { return r.first == layerName; });
    if (record == mProfile.end())
      mProfile.push_back(std::make_pair(layerName, ms));
    else
      record->second += ms;
  }

  void printLayerTimes() {
    float totalTime = 0;
    for (size_t i = 0; i < mProfile.size(); i++) {
      printf("%-40.40s %4.3fms\n", mProfile[i].first.c_str(),
             mProfile[i].second);
      totalTime += mProfile[i].second;
    }
    printf("Time over all layers: %4.3f\n", totalTime);
  }
};

136 137 138 139 140 141 142 143
inline size_t ProductDim(const nvinfer1::Dims& dims) {
  size_t v = 1;
  for (int i = 0; i < dims.nbDims; i++) {
    v *= dims.d[i];
  }
  return v;
}

144 145 146 147 148 149 150 151 152 153 154 155 156
inline void PrintITensorShape(nvinfer1::ITensor* X) {
  auto dims = X->getDimensions();
  auto name = X->getName();
  std::cout << "ITensor " << name << " shape: [";
  for (int i = 0; i < dims.nbDims; i++) {
    if (i == dims.nbDims - 1)
      std::cout << dims.d[i];
    else
      std::cout << dims.d[i] << ", ";
  }
  std::cout << "]\n";
}

157 158 159 160 161 162 163 164 165 166
template <typename T>
inline std::string Vec2Str(const std::vector<T>& vec) {
  std::ostringstream os;
  os << "(";
  for (size_t i = 0; i < vec.size() - 1; ++i) {
    os << vec[i] << ",";
  }
  os << vec[vec.size() - 1] << ")";
  return os.str();
}
Y
Yan Chunwei 已提交
167 168 169
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle