utils.py 60.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import os
16
import copy
17
import paddle
18
import threading
19
import numpy as np
20 21
import warnings
import logging
22
from functools import reduce
23 24

import paddle.fluid.core as core
25
from paddle.distributed.fleet.meta_optimizers.common import OpRole
26
from paddle.distributed.auto_parallel.process_group import get_all_process_groups
27
from paddle.fluid.io import is_parameter, is_belong_to_optimizer
J
JZ-LIANG 已提交
28
from paddle.distributed.auto_parallel.dist_attribute import TensorDistributedAttribute, OperatorDistributedAttribute
29

30 31 32 33
__not_shape_var_type__ = [
    core.VarDesc.VarType.READER, core.VarDesc.VarType.STEP_SCOPES
]

34

35 36 37 38 39 40 41 42 43 44 45 46 47
def get_logger(log_level, name="auto_parallel"):
    logger = logging.getLogger(name)
    logger.propagate = False
    if not logger.handlers:
        logger.setLevel(log_level)
        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
    return logger


48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def is_valid_list_index(list, index):
    if index >= -len(list) and index < len(list):
        return True
    else:
        return False


def is_dim_shard(mapping):
    if mapping != -1:
        return True
    else:
        return False


def is_dim_replicate(mapping):
    if mapping == -1:
        return True
    else:
        return False


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def verify_dims_mapping(dims_mapping, process_mesh):
    if dims_mapping is None:
        return False
    if not all(isinstance(d, int) for d in dims_mapping):
        return False
    for i in range(len(dims_mapping)):
        if dims_mapping[i] < -1 or dims_mapping[i] >= len(process_mesh.shape):
            return False
    for i in range(len(process_mesh.shape)):
        if dims_mapping.count(i) > 1:
            return False
    return True


def convert_to_dims_mapping(shard_spec, process_mesh):
    dims_mapping = []
    for shard in shard_spec:
        if shard is None:
            dims_mapping.append(-1)
Z
zhaoyingli 已提交
88 89
        elif process_mesh.topology[process_mesh.dim_names.index(shard)] == 1:
            dims_mapping.append(-1)
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        else:
            dims_mapping.append(process_mesh.dim_names.index(shard))
    return dims_mapping


def convert_to_shard_spec(dims_mapping, process_mesh):
    shard_spec = []
    for dim_mapping in dims_mapping:
        if dim_mapping == -1:
            shard_spec.append(None)
        else:
            shard_spec.append(process_mesh.dim_names[dim_mapping])
    return shard_spec


def verify_shard_spec(shard_spec, tensor_shape, process_mesh):
    if len(shard_spec) != len(tensor_shape):
        return False
    for shard in shard_spec:
        if shard is not None and not isinstance(shard, str):
            return False
        if shard is not None and shard not in process_mesh.dim_names:
            return False
    dims_mapping = convert_to_dims_mapping(shard_spec, process_mesh)
    if not verify_dims_mapping(dims_mapping, process_mesh):
        return False
    for i in range(len(tensor_shape)):
        if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
            and tensor_shape[i] % process_mesh.shape[dims_mapping[i]] != 0:
            return False
    return True


123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
def compute_compatible_dim_mapping(dim_mappings):
    if not dim_mappings:
        return None
    compatible_mapping = dim_mappings[0]
    for mapping in dim_mappings:
        if compatible_mapping == -1:
            compatible_mapping = mapping
        elif mapping == -1:
            continue
        elif compatible_mapping == mapping:
            continue
        else:
            return None
    return compatible_mapping


def compute_compatible_dims_mapping(dims_mapping_list):
    if not dims_mapping_list:
        return None
    length = len(dims_mapping_list[0])
    for dims_mapping in dims_mapping_list:
        assert dims_mapping is not None, \
            "Dims mapping must not be None for compatible computation"
        assert len(dims_mapping) == length, \
            "The length of dims_mapping in list must be same for compatible computation."
    compatible_result = []
    for dim_mappings in zip(*dims_mapping_list):
        compatible_dim_mapping = compute_compatible_dim_mapping(
            list(dim_mappings))
        if compatible_dim_mapping is None:
            return None
        compatible_result.append(compatible_dim_mapping)
    return compatible_result


def compute_compatible_process_mesh(process_mesh_list):
    compatible_process_mesh = None
    if not process_mesh_list:
        return compatible_process_mesh
    for process_mesh in process_mesh_list:
        if process_mesh is not None:
164
            if compatible_process_mesh is None or compatible_process_mesh == process_mesh:
165 166
                compatible_process_mesh = process_mesh
            else:
167
                return None
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    return compatible_process_mesh


def compute_compatible_and_update_dim_mapping(dims_mapping_list, index_list):
    assert len(dims_mapping_list) == len(index_list)
    changed = False
    dim_mappings = []
    for i in range(len(dims_mapping_list)):
        assert is_valid_list_index(dims_mapping_list[i], index_list[i])
        dim_mappings.append(dims_mapping_list[i][index_list[i]])
    compatible_dim_mapping = compute_compatible_dim_mapping(dim_mappings)
    if compatible_dim_mapping is None:
        return False
    for i in range(len(dims_mapping_list)):
        if compatible_dim_mapping != dims_mapping_list[i][index_list[i]]:
            dims_mapping_list[i][index_list[i]] = compatible_dim_mapping
            changed = True
    return changed


def append_distributed_attr_suffix(name):
    """
    Append auto parallel suffix for distributed attribute name.
    """
    return name + core.kAutoParallelSuffix()


def remove_distributed_attr_suffix(name):
    """
    Remove auto parallel suffix from distributed attribute name.
    """
    return name.strip(core.kAutoParallelSuffix())


def check_distributed_attr_for_program(program, dist_context=None):
203
    from .dist_context import get_default_distributed_context
204 205 206 207 208 209
    if dist_context is None:
        dist_context = get_default_distributed_context()
    assert dist_context.is_initialized_for_program(), \
        "Distributed attributes must be initialized before check."
    for block in program.blocks:
        for tensor in block.vars.values():
210 211
            dist_tensor = dist_context.get_dist_tensor_for_graph(tensor)
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
212
                tensor)
213
            if (tensor_dist_attr is not None) and (not dist_tensor.is_valid()):
214 215
                return False
        for op in block.ops:
216 217 218
            dist_op = dist_context.get_dist_op_for_graph(tensor)
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if (op_dist_attr is not None) and (not dist_op.is_valid()):
219 220 221 222
                return False
    return True


223
def print_program_with_dist_attr(program, dist_context=None):
224 225 226 227 228 229
    """
    This function reuses the original program output ability with a distributed context.
    Using lock can avoid multiple threads change the default distributed context simultaneously.
    """
    lock = threading.Lock()
    lock.acquire()
230 231
    from .dist_context import get_default_distributed_context
    from .dist_context import set_default_distributed_context
232 233
    if dist_context is None:
        dist_context = get_default_distributed_context()
234
        print(program, flush=True)
235 236 237
    else:
        original_default_context = get_default_distributed_context()
        set_default_distributed_context(dist_context)
238
        print(program, flush=True)
239 240
        set_default_distributed_context(original_default_context)
    lock.release()
241 242 243 244


def _get_comm_group(processes, shape, axis, rank):
    """
245
    Given a rank and the processes mesh the rank belongs to,
246 247 248 249 250 251 252 253 254 255 256
    compute the communication peers of the rank based on the give axis in the mesh.

    Example: 16 processes managed in a 4-Dimensinal mesh with shape of [2, 2, 2, 2].
    the rank communication peers of rank 0 (included) are following:
    in axis 0: [0, 1]
    in axis 1: [0, 2]
    in axis 2: [0, 4]
    in axis 3: [0, 8]
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
257 258 259
    # tricks to support processes mesh when it is not start with 0 or continuous
    assert rank in processes, "rank [{}] is NOT in processes group {}".format(
        rank, processes)
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    coordinates_in_group = [coordinate[:] for i in range(shape[axis])]

    # select comm group
    for i in range(shape[axis]):
        coordinates_in_group[i][axis] = i

    ranks_in_group_relative = [
        _coordinate2linear_idx(shape, coordinate)
        for coordinate in coordinates_in_group
    ]
    ranks_in_group = [processes[idx] for idx in ranks_in_group_relative]

    return sorted(ranks_in_group)


277 278
def _get_idx_in_axis(processes, shape, axis, rank):
    """
279
    Given a rank and the processes mesh the rank belongs to,
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    compute the index of the rank in given axis.

    Example: 27 processes managed in a 3-Dimensinal mesh with shape of [3, 3, 3].
    the index of rank 22 are:
    in axis 0: 1
    in axis 1: 1
    in axis 2: 2
    """

    # NOTE _linear_idx2coordinate assume processes mesh start with 0 and continuous
    #  tricks to support processes mesh when it is not start with 0 or continuous
    rank_relatvie = processes.index(rank)
    coordinate = _linear_idx2coordinate(shape, rank_relatvie)
    return coordinate[axis]


296 297 298 299
def _coordinate2linear_idx(mesh_shape, coordinate):
    """
    convert a coordinate in multidimensional mesh space into a scala idx in linear space.

300
    it use Row-major order for dimension conversion.
301
    so it has:  [most_significant_dim, ..., least_significant_dim]
302
    assume:
303 304 305 306

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

307
    linear_idx of a n dimensional coordinate is:
308 309

        I[n-1] * (S[n-2] * S[n-3] * S[n-4] *     ....    S[0]) +
310 311
        I[n-2] * (         S[n-3] * S[n-4] *     ....    S[0]) +
        I[n-3] * (                  S[n-4] *     ....    S[0]) +
312
        ...
313
        I[1]   * (                                       S[0]) +
314 315 316 317
        I[0]

    """
    # NOTE the following function work based on a strong an assumption
318
    # that the processes in mesh are
319
    #    1. starts from 0
320 321
    #    2. continuous
    # it will be wrong if ths above condition doesnot meet,
322
    # e.g. process_mesh = { process_groups = [7, 8, 9,10, 12, 13, 14, 15], mesh = [2, 4]}
323
    # if you want a more general mapping, you should use cartesian product
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

    assert len(mesh_shape) == len(
        coordinate
    ), "coordinate should have the same size as mesh shape, but got shape: {}, coordinate: {}".format(
        mesh_shape, coordinate)
    for i in range(len(mesh_shape)):
        assert coordinate[
            i] >= 0, "index in dimension [{}] is least than zero. coordinate: {}".format(
                i, coordinate)
        assert coordinate[i] < mesh_shape[
            i], "index beyond extent in dimension [{}]. shape: {}, coordinate: {}".format(
                i, mesh_shape, coordinate)

    base = mesh_shape[-1]
    linear_idx = coordinate[-1]

    # row major order
    for i in range(len(mesh_shape) - 2, -1, -1):
        linear_idx += base * coordinate[i]
        base *= mesh_shape[i]

    return linear_idx


def _linear_idx2coordinate(mesh_shape, linear_idx):
    """
    mapping a linear scala into multidimensional mesh space, return it coordinate in that space.

    it is the inverse function of _coordinate2linear_idx.
353
    assume:
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

        the size of i-th dimension to be:  S[i]
        the index of j-th dimension is: I[j]

    the coordinate given linear_idx is:

        I[0] = linear_idx                                  % S[0]
        I[0] = (linear_idx / S[0])                         % S[1]
        I[0] = (linear_idx / (S[0] * S[1]))                % S[2]
        ....

    """

    assert linear_idx >= 0, "linear index [{}] is least than zero".format(
        linear_idx)
    assert linear_idx < np.prod(
        mesh_shape
    ), "linear index beyond the extent of mesh shape. shape: {}, linear index: {}".format(
        mesh_shape, linear_idx)

    base = 1
    coordinate = [-1] * len(mesh_shape)

    for i in reversed(range(len(mesh_shape))):
        offset = linear_idx / base
        coordinate[i] = int(offset % mesh_shape[i])
        base *= mesh_shape[i]

    # row major order
    return coordinate
384 385


386
def _get_corresponding_rank(dist_context, target_mesh, rank):
387 388 389 390 391 392

    # TODO(JZ-LIANG) a hack method to support varying mesh in Pipeline parallelism case.
    # we assume that all mesh are evenly divide from a parent mesh and should have same size.
    # to revise this in future.

    coordinate = None
393 394
    for mesh in dist_context.process_meshes:
        if rank in mesh.processes and mesh.topology == target_mesh.topology:
395
            coordinate = _linear_idx2coordinate(mesh.topology,
396
                                                mesh.processes.index(rank))
397 398
            break

399 400 401
    # assert coordinate is not None, "could NOT found rank [{}] in any registered mesh".format(
    #     rank)
    if coordinate is not None:
402 403
        return target_mesh.processes[_coordinate2linear_idx(
            mesh.topology, coordinate)]
404 405
    else:
        return target_mesh.processes[0]
406 407


408 409
def _get_unshard_dist_shape(var, dist_attr):
    var_shape = var.shape
410 411
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
412 413 414 415 416 417 418 419 420 421 422 423 424 425
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            new_shape.append(var_shape[idx] * mesh[mapping[idx]])

    return new_shape


426
def make_data_unshard(dist_main_prog, dist_startup_prog, dist_context=None):
427
    from .dist_context import get_default_distributed_context
428 429
    if dist_context is None:
        dist_context = get_default_distributed_context()
430 431 432

    for var in dist_main_prog.list_vars():
        if var.is_data:
433
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
434 435 436
                var)
            inverse_shape = _get_unshard_dist_shape(var, tensor_dist_attr)
            var.desc.set_shape(inverse_shape)
437
            dim_mapping = tensor_dist_attr.dims_mapping
438
            dim_mapping = [-1] * len(dim_mapping)
439 440
            tensor_dist_attr.dims_mapping = dim_mapping
            dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
441 442


443 444 445
def _update_addition_info(addition_info):
    """ Update default addition_info with inputs """
    add_info = {"epoch": 0, "batch": 0, "batch_size": 0}
446
    if not addition_info:
447
        return add_info
448
    elif not isinstance(addition_info, dict):
449 450
        raise TypeError("The type of 'addition_info' should be 'dict', "
                        "but got '{}'.".format(str(type(addition_info))))
451
    else:
452 453 454 455
        for item, value in addition_info.items():
            if item not in ["epoch", "batch", "batch_size"]:
                raise ValueError(
                    "The key of 'addition_info' should be one of the "
456 457
                    "['epoch', 'batch', 'batch_size'], but got '{}'.".format(
                        str(item)))
458 459 460 461 462 463
            if not isinstance(value, int):
                raise ValueError(
                    "The value of 'addition_info' should be 'int', "
                    "but got '{}'.".format(str(type(value))))
            add_info[item] = value
        return add_info
464 465 466


def _check_valid_path(file_path):
467
    """ Validity check of input file path """
468 469 470
    if not file_path:
        return file_path
    elif isinstance(file_path, list):
471 472 473 474 475
        for file in file_path:
            if not isinstance(file, str):
                raise TypeError("The type of file path should be 'str', "
                                "but got '{}'.".format(str(type(file))))
            if not os.path.exists(file):
476 477
                raise ValueError(
                    "The file path '{}' does not exist.".format(file))
478 479
        return file_path
    else:
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        raise TypeError("The type of file path should be 'list', "
                        "but got '{}'.".format(str(type(file_path))))


def _check_param_dict(param_dict):
    if not param_dict:
        raise ValueError("'param_dict' cannot be None.")
    elif not isinstance(param_dict, dict):
        raise TypeError("The type of 'param_dict' should be 'dict', "
                        "but got '{}'.".format(str(type(param_dict))))
    else:
        for name, value in param_dict.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of key of 'param_dict' should be 'str', "
                    "but got '{}'.".format(str(type(name))))
            if not isinstance(value, paddle.fluid.LoDTensor):
                raise TypeError(
                    "The type of value of 'param_dict' should be 'LoDTensor', "
                    "but got '{}'.".format(str(type(value))))
        return param_dict


def _check_dist_attr(dist_attr):
    if not dist_attr:
        return dist_attr
    elif not isinstance(dist_attr, dict):
        raise TypeError("The type of 'dist_attr' should be 'dict', "
                        "but got '{}'.".format(str(type(dist_attr))))
    else:
        for name, value in dist_attr.items():
            if not isinstance(name, str):
                raise TypeError(
                    "The type of param name of 'dist_attr' should be 'str', "
                    "but got '{}'.".format(str(type(name))))
            if not isinstance(value, dict):
                raise TypeError(
                    "The type of distributed attribute should be 'dict', "
                    "but got '{}'".format(str(type(value))))
            attr = ['process_shape', 'process_group', 'dims_mapping']
            if list(value.keys()) != attr:
                raise ValueError(
                    "The key of distributed attribute should be "
                    "'['process_shape', 'process_group', 'dims_mapping']', "
                    "but got {}.".format(str(value.keys())))
        return dist_attr
526 527 528 529


def save_distributed_checkpoint(program,
                                checkpoint_path,
530
                                dist_attr_path,
531
                                addition_info=None,
532 533
                                is_integrated=False,
                                dist_context=None):
534 535
    """
    Save model parameter state, optimzer state, distributed attribute and
536 537 538 539 540
    additional information of each rank.

    Args:
        program(Program): The program to be saved.
        checkpoint_path(str): The path of the checkpoint file to be saved.
541 542 543
        dist_attr_path(str): The path of distributed attribute file to be saved.
        addition_info(dict, optional): Additional information, key should be selected in ['epoch', 'batch', 'batch_size'].
            Default values are 0, when 'addition_info' is None. Default: None.
544
        is_integrated(bool, optional): Whether to integrate param before save. Default: False.
545
        dist_context(DistributedContext ,optional): collect related distributed information for program
546 547 548 549 550 551 552

    Returns:
        None

    Examples:
        .. code-block:: python

553 554 555 556
            path = os.path.join("./output", "step_%d" % step)
            os.makedirs(path, exist_ok=True)
            add_info = {'batch': step, "batch_size": global_batch_size}
            save_distributed_checkpoint(program, path, path, add_info)
557
    """
558 559 560 561 562 563 564 565
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    assert isinstance(is_integrated, bool)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    addition_info = _update_addition_info(addition_info)

566
    if not is_integrated:
567 568
        _save_distributed_state_dict(program, addition_info, checkpoint_path)
        _save_distributed_attribute(program, dist_attr_path, dist_context)
569 570 571 572 573 574
    else:
        # TODO: integrate param before save
        raise NotImplementedError(
            "Integrating parameter has not been implemented.")


575
def load_distributed_checkpoint(checkpoint_path, dist_attr_path):
576
    """
577
    Load parameter, optimizer, distributed attribute and addition_info.
578 579

    Args:
580 581
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
582 583

    Returns:
584 585
        param_dict(dict): parameters' value of all ranks.
        dist_attr(dict): parameters' distributed attribute.
586
        addition_info(dict): additional information user saved in last training.
587 588 589 590 591 592 593

    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.

    Examples:
        .. code-block:: python

594
            ckpt_path = ['./model_state_rank0.pdmodel',
595
                         './model_state_rank1.pdmodel']
596
            dist_attr_path = ['./dist_attr_rank0.pdattr',
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
                              './dist_attr_rank1.pdattr']
            param_dict, dist_attr, add_info = load_distributed_checkpoint(ckpt_path, dist_attr_path)
    """
    assert _check_valid_path(checkpoint_path), \
        "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), \
        "'dist_attr_path' cannot be None."

    state_dict_info = _load_distributed_state_dict(checkpoint_path)
    dist_attr = _load_distributed_attribute(dist_attr_path)
    param_dict = state_dict_info["model"]
    addition_info = state_dict_info["addition_info"]
    return param_dict, dist_attr, addition_info


def load_checkpoint_into_program(checkpoint_path,
                                 dist_attr_path,
                                 program,
                                 dist_context=None):
616
    """
617 618 619 620 621 622 623 624 625 626
    Load parameter, optimizer, distributed attribute and addition_info into model.

    Args:
        checkpoint_path(list[str]): model parameter file path, must be in order of rank id.
        dist_attr_path(list[str]): distributed attribute file path, must be in order of rank id.
        program(Program): the program to be updated with checkpoint_path.
        dist_context(DistributedContext ,optional): collect related distributed information for program

    Returns:
        addition_info(dict): user saved in last train.
627

628 629
    Notes:
        The return, 'addition_info', is belonging to the first file of checkpoint_path by default.
630 631 632 633 634

    Examples:
        .. code-block:: python

            exe.run(startup_program)
635
            ckpt_path = ['./model_state_rank0.pdmodel',
636
                         './model_state_rank1.pdmodel']
637
            dist_attr_path = ['./dist_attr_rank0.pdattr',
638 639
                              './dist_attr_rank1.pdattr']
            load_checkpoint_into_program(ckpt_path, dist_attr_path, main_program)
640
    """
641
    from .dist_context import get_default_distributed_context
642

643 644 645 646 647 648 649 650 651 652 653 654
    assert isinstance(program, paddle.fluid.framework.Program)
    assert _check_valid_path(checkpoint_path), \
        "'checkpoint_path' cannot be None."
    assert _check_valid_path(dist_attr_path), \
        "'dist_attr_path' cannot be None."
    if dist_context is None:
        dist_context = get_default_distributed_context()
    all_state_dict_info = _load_distributed_state_dict(checkpoint_path)
    all_pre_dist_attr = _load_distributed_attribute(dist_attr_path)
    all_cur_dist_attr = get_dist_attr(program, dist_context)
    all_param_dict = all_state_dict_info["model"]
    addition_info = all_state_dict_info["addition_info"]
655 656 657
    sliced_param_dict = merge_and_slice_parameter(all_param_dict,
                                                  all_pre_dist_attr,
                                                  all_cur_dist_attr)
658 659 660 661 662 663
    load_parameter_into_program(sliced_param_dict, program)

    return addition_info


def load_parameter_into_program(param_dict, program):
664
    """
665 666 667 668 669 670
    Load parameters into program.

    Args:
        param_dict(dict): parameters' name and value.
        program(Program): the program to be updated
    """
671
    assert isinstance(param_dict, dict)
672
    assert program and isinstance(program, paddle.fluid.framework.Program)
673 674
    if not param_dict:
        return
675 676 677 678 679 680 681 682 683 684 685 686 687 688
    program.set_state_dict(param_dict)


def _save_distributed_attribute(program, dist_attr_path, dist_context):
    """ Save distributed attribute of all parameters """
    # TODO: just save a complete distributed attribute file
    rank_id = paddle.distributed.get_rank()
    dist_attr_name = os.path.join(dist_attr_path,
                                  "dist_attr_rank{}.pdattr".format(rank_id))
    dist_attr_dict = {
        "model": get_dist_attr(program, dist_context),
        "world_size": paddle.distributed.get_world_size()
    }
    paddle.save(dist_attr_dict, dist_attr_name)
689 690
    logging.info(
        "Already saved distributed attribute to '{}'.".format(dist_attr_path))
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725


def _load_distributed_attribute(dist_attr_path):
    """ Load parameters' distributed attribute from dist_attr_path """
    total_dist_attr = {}
    for dist_attr_file in dist_attr_path:
        dist_attr = paddle.load(dist_attr_file)
        pre_world_size = dist_attr["world_size"]
        assert pre_world_size == len(dist_attr_path), \
            "The number of 'dist_attr_path' must be equal to the last training world size."
        for name, attr in dist_attr["model"].items():
            if name not in total_dist_attr:
                total_dist_attr[name] = attr

    return total_dist_attr


def _save_distributed_state_dict(program, addition_info, checkpoint_path):
    """ Save parameters' state_dict """
    rank = paddle.distributed.get_rank()
    ckpt_file_name = os.path.join(checkpoint_path,
                                  "model_state_rank{}.pdmodel".format(rank))
    state_dict = {
        "model": program.state_dict(),
        "world_size": paddle.distributed.get_world_size(),
        "addition_info": addition_info
    }
    paddle.save(state_dict, ckpt_file_name)
    logging.info("Already saved model to '{}'.".format(checkpoint_path))


def _load_distributed_state_dict(checkpoint_path):
    """ Load parameters' state_dict from checkpoint_path """
    all_state_dict = {}
    for idx, ckpt_file in enumerate(checkpoint_path):
Z
zhaoyingli 已提交
726
        state_dict_info = paddle.load(ckpt_file, return_numpy=True)
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
        pre_world_size = state_dict_info["world_size"]
        assert pre_world_size == len(checkpoint_path), \
            "The number of 'checkpoint_path' must be equal to the last training world size."
        if idx == 0:
            addition_info = state_dict_info["addition_info"]
        for name, value in state_dict_info["model"].items():
            if name in all_state_dict:
                all_state_dict[name].append(np.array(value))
            else:
                all_state_dict[name] = [np.array(value)]

    all_state_dict_info = {
        "model": all_state_dict,
        "addition_info": addition_info
    }
    return all_state_dict_info


def get_dist_attr(program, dist_context=None):
746
    """
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
    Get distributed attribute of current rank.

    Args:
        program(Program): main program for training
    """
    from .dist_context import get_default_distributed_context

    assert isinstance(program, paddle.fluid.framework.Program)
    if dist_context is None:
        dist_context = get_default_distributed_context()
    dist_attr = {}
    for var in program.list_vars():
        if is_parameter(var) or is_belong_to_optimizer(var):
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
                var)
            process_mesh = tensor_dist_attr.process_mesh
            dims_mapping = tensor_dist_attr.dims_mapping
            dist_attr[var.name] = {
                "process_shape": process_mesh.topology,
                "process_group": process_mesh.processes,
                "dims_mapping": dims_mapping
            }
    return dist_attr


def merge_and_slice_parameter(dist_param_dict, pre_dist_attr, cur_dist_attr):
    """
    Merge parameters with previous dist_attr and slice parameters with current dist_attr

    Arags:
        dist_param_dict(dict): parameters' value of all ranks.
        pre_dist_attr(dict): parameters' dist_attr of last training process.
        cur_dist_attr(dict): parameters' dist_attr of current training process.

    Returns:
        dist_param_dict(dict): parameters' value of current rank.
    """
    assert _check_dist_attr(pre_dist_attr), "'pre_dist_attr' cannot be None."
    assert isinstance(dist_param_dict, dict), \
        "The type of 'dist_param_dict' should be 'dict', but got {}.".format(
            str(type(dist_param_dict)))
    for name, value in dist_param_dict.items():
        if not isinstance(name, str):
            raise TypeError("The key of 'dist_param_dict' is parameter's name, "
791 792
                            "and its type should be 'str', but got {}.".format(
                                str(type(name))))
793 794 795 796 797 798
        if not isinstance(value, list) or not all(
                isinstance(v, np.ndarray) for v in value):
            raise TypeError(
                "The value of 'dist_param_dict' is parameter's value of all ranks, "
                "and its type should be 'list(numpy.ndarray)'.")

799 800 801
    if cur_dist_attr is None:
        return {}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    param_not_in_pre = []
    param_not_in_cur = []
    logging.info("Start to merge and slice parameters.")
    for var_name in cur_dist_attr.keys():
        if var_name not in pre_dist_attr:
            param_not_in_pre.append(var_name)
            continue

        pre_attr = pre_dist_attr[var_name]
        cur_attr = cur_dist_attr[var_name]
        if pre_attr == cur_attr:
            # skip merge and slice
            rank_id = paddle.distributed.get_rank()
            index = cur_attr["process_group"].index(rank_id)
            param = dist_param_dict[var_name][index]
817
            dist_param_dict[var_name] = param
818 819 820 821 822 823
            continue

        pre_param = dist_param_dict[var_name]
        pre_dims_mapping = pre_attr["dims_mapping"]
        cur_dims_mapping = cur_attr["dims_mapping"]
        if len(set(pre_dims_mapping)) > 1 or -1 not in pre_dims_mapping:
824 825
            complete_param = _merge_parameter_with_dist_attr(
                pre_param, pre_attr)
826 827 828
            dist_param_dict[var_name] = complete_param
        else:
            complete_param = pre_param[0]
829
            dist_param_dict[var_name] = complete_param
830 831

        if len(set(cur_dims_mapping)) > 1 or -1 not in cur_dims_mapping:
832 833
            sliced_param = _slice_parameter_with_dist_attr(
                complete_param, cur_attr)
834 835 836 837 838 839 840 841
            dist_param_dict[var_name] = sliced_param

    for var_name in pre_dist_attr:
        if var_name not in cur_dist_attr:
            param_not_in_cur.append(var_name)
            dist_param_dict.pop(var_name)

    if param_not_in_pre:
842 843 844
        warnings.warn(
            "Parameters '{}' are not found in last training process.".format(
                str(param_not_in_pre)))
845 846
    if param_not_in_cur:
        warnings.warn(
847 848
            "Parameters '{}' are not found in current training process.".format(
                str(param_not_in_cur)))
849 850 851 852 853 854

    return dist_param_dict


def _merge_parameter_with_dist_attr(param_list, dist_attr):
    """ Merge parameter with distributed attribute """
855
    from .reshard import Resharder
856 857 858 859 860

    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # get the complete shape of the parameter
861 862 863
    complete_shape = Resharder.compute_complete_shape(param_list[0].shape,
                                                      process_shape,
                                                      dims_mapping)
864 865
    # merge the parameter with dist_attr
    partition_param_list = []
Z
zhaoyingli 已提交
866
    merged_partiton = []
867
    for process in process_group:
868
        partition_index = Resharder.compute_partition_index(
869 870
            process, complete_shape, dims_mapping, process_shape, process_group)
        index = process_group.index(process)
Z
zhaoyingli 已提交
871 872 873 874 875
        if partition_index not in merged_partiton:
            merged_partiton.append(partition_index)
            _merge_parameter(partition_param_list, param_list[index],
                             partition_index, complete_shape)

876 877
    assert len(partition_param_list) == 1 or not partition_param_list, \
        "Fail to merge parameter"
878
    complete_param = partition_param_list[0][0]
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    return complete_param


def _slice_parameter_with_dist_attr(param, dist_attr):
    """ Slice parameter with distributed attribute """
    param = np.array(param) if isinstance(param,
                                          paddle.fluid.LoDTensor) else param
    dims_mapping = dist_attr["dims_mapping"]
    process_shape = dist_attr["process_shape"]
    process_group = dist_attr["process_group"]
    # slice the parameter with dist_attr
    partition_index_list = _get_split_indices(param.shape, dims_mapping,
                                              process_shape, process_group)
    sliced_param_list = _slice_parameter(param, partition_index_list,
                                         len(partition_index_list))
    # get the current parameter's index in sliced_param_list
    rank_id = paddle.distributed.get_rank()
896 897 898
    sliced_param_index = _get_sliced_param_index(rank_id, param.shape,
                                                 dims_mapping, process_shape,
                                                 process_group)
899
    sliced_param = sliced_param_list[sliced_param_index]
900 901 902
    return sliced_param


Z
zhaoyingli 已提交
903 904
def _merge_parameter(partition_param_list, param, partition_index,
                     complete_shape):
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
    """
    Merge partitial parameters to a complete one.

    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
            partition_param_list = [(np.array([[[1.11, 1.12]]]), [[0,1],[0,1],[0,2]])]
            param = np.array([[[1.13, 1.14]]])
            partition_index = [[0,1],[0,1],[2,4]]

            _merge_parameter(partition_param_list, param, partition_index)
            # partition_param_list: [(np.array([[[1.11, 1.12, 1.13, 1.14]]]), [[0,1],[0,1],[0,4]])]
    """
922
    from .reshard import Resharder
923

Z
zhaoyingli 已提交
924 925 926 927 928 929 930 931 932
    if len(partition_param_list) == 1:
        is_complete_data = True
        for idx, item in enumerate(partition_param_list[0][1]):
            if item[0] != 0 or item[1] != complete_shape[idx]:
                is_complete_data = False
                break
        if is_complete_data:
            return

933 934
    if not partition_param_list:
        partition_param_list.append((param, partition_index))
935
    else:
936 937
        i = 0
        while i < len(partition_param_list):
938
            concat_axis, first_order, new_partition = Resharder.compute_concat_info(
939 940 941 942 943 944 945 946 947 948
                partition_param_list[i][1], partition_index)
            if concat_axis != -1:
                if first_order == 0:
                    new_param = np.concatenate(
                        (partition_param_list[i][0], param), axis=concat_axis)
                else:
                    new_param = np.concatenate(
                        (param, partition_param_list[i][0]), axis=concat_axis)

                partition_param_list.pop(i)
Z
zhaoyingli 已提交
949 950
                _merge_parameter(partition_param_list, new_param, new_partition,
                                 complete_shape)
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
                break
            i += 1


def _slice_parameter(complete_param, partition_index_list, length):
    """
    Slice a complete parameter.

    Returns:
        sliced_param_list(list): sliced parameters with 'partition_index_list'

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            sliced_param_list = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]
    """
    sliced_param_list = []
    axis = len(complete_param.shape) - length
978 979 980
    sliced_param = np.split(complete_param,
                            partition_index_list[axis],
                            axis=axis)
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    if length == 1:
        return sliced_param
    for param in sliced_param:
        sliced_param_list.extend(
            _slice_parameter(param, partition_index_list, length - 1))
    return sliced_param_list


def _get_sliced_param_index(rank, complete_shape, dims_mapping, process_shape,
                            process_group):
    """
    Get sliced_param's index of current rank in all sliced parameters list.

    Returns:
        sliced_param_index(int): the index of sliced param in sliced_param_list

    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            rank = 2
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            slice_param = _slice_parameter(complete_param, [[], [], [2, 4]], 3)
1009
            # slice_param:
1010 1011 1012 1013 1014 1015
            # [array([[[1.11, 1.12]]]), array([[[1.13, 1.14]]]), array([[[1.15, 1.16]]])]

            index = _get_sliced_param_index(rank, complete_shape, dims_mapping
                                            process_shape, process_group)
            # index: 2
    """
1016
    from .reshard import Resharder
1017

1018 1019 1020 1021
    partition_index = Resharder.compute_partition_index(rank, complete_shape,
                                                        dims_mapping,
                                                        process_shape,
                                                        process_group)
1022 1023 1024 1025 1026 1027
    sliced_param_index = 0
    for i, shape in enumerate(complete_shape):
        if dims_mapping[i] == -1:
            slice_shape = shape
        else:
            slice_shape = shape // process_shape[dims_mapping[i]]
1028 1029
        if slice_shape == 1:
            index = partition_index[i][0]
1030 1031 1032 1033
        else:
            index = (partition_index[i][0] + 1) // slice_shape
        sliced_param_index = sliced_param_index * (shape // slice_shape) + index
    return sliced_param_index
1034 1035


1036 1037 1038 1039 1040 1041 1042
def _get_split_indices(complete_shape, dims_mapping, process_shape,
                       process_group):
    """
    Get split indices of every dimension.

    Returns:
        split_indices_list(list): the split indices of every dimension of the parameter
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    Examples:
        .. code-block:: python

            import numpy as np
            complete_param = np.array([[[1.11, 1.12, 1.13, 1.14, 1.15, 1.16]]])
            complete_shape = [1, 1, 6]
            dims_mapping = [-1, -1, 0]
            process_shape = [3]
            process_group = [0, 1, 2]

            index = _get_split_indices(complete_shape, dims_mapping, process_shape, process_group)
            # index: [[], [], [2, 4]]
    """
1057
    from .reshard import Resharder
1058 1059 1060

    split_indices_list = []
    for process in process_group:
1061
        partition_index = Resharder.compute_partition_index(
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
            process, complete_shape, dims_mapping, process_shape, process_group)
        if split_indices_list:
            for dim in range(len(partition_index)):
                split_indices_list[dim].extend(partition_index[dim])
        else:
            split_indices_list = partition_index
    split_indices_list = list(
        map(lambda x, y: list(set(x) - set([y]) - set([0])), split_indices_list,
            complete_shape))
    split_indices_list = [sorted(x) for x in split_indices_list]
    return split_indices_list
Z
zhaoyingli 已提交
1073 1074 1075 1076 1077 1078 1079 1080


def set_grad_var_shape(program, dist_context):
    from .operators.common import infer_shape
    from paddle.distributed.fleet.meta_optimizers.common import OpRole

    block = program.global_block()
    vars = block.vars
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    appended_grad_times = 0
    grad_var_to_var = dist_context.dist_op_context.grad_var_to_var

    for idx, op in enumerate(block.ops):

        if int(op.attr('op_role')) != int(OpRole.Backward):
            continue

        if int(block.ops[idx-1].attr('op_role')) == int(OpRole.Forward) or \
            int(block.ops[idx-1].attr('op_role')) == 257:
            appended_grad_times += 1
J
JZ-LIANG 已提交
1092 1093 1094 1095

        if op.type in ["check_finite_and_unscale", "update_loss_scaling"]:
            break

1096
        if op.type in ["sum", "concat", "shape"]:
Z
zhaoyingli 已提交
1097 1098
            continue

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
        assert op_dist_attr is not None

        for var_name in op.output_arg_names:

            if "@GRAD" not in var_name:
                continue
            if var_name in grad_var_to_var[appended_grad_times]:
                forward_var_name = grad_var_to_var[appended_grad_times][
                    var_name]
            else:
Z
zhaoyingli 已提交
1110
                forward_var_name = var_name[:var_name.find("@GRAD")]
1111 1112 1113

            if op.type in [
                    "c_allreduce_sum", "c_identity", "scale", "cast",
1114
                    "fill_any_like"
1115 1116
            ]:
                forward_var_name = op.input_arg_names[0]
1117
            elif op.type == "matmul_v2_grad" or op.type == "matmul_grad" or op.type == "mul_grad":
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                forward_var_name = None
                for output_name in op.output_names:
                    if var_name in op.output(output_name):
                        assert "@GRAD" in output_name
                        input_name = output_name[:output_name.find("@GRAD")]
                        assert len(op.input(input_name)) == 1
                        forward_var_name = op.input(input_name)[0]
                assert forward_var_name is not None

            need_set_shape_list = [
                "reshape2_grad", "softmax_with_cross_entropy_grad",
                "transpose2_grad", "softmax_grad", "cross_entropy_grad2",
                "dropout_grad", "tanh_grad", "slice", "assign",
                "matmul_v2_triple_grad", "elementwise_add_triple_grad",
1132
                "fill_constant", "sqrt_grad",
Z
zhaoyingli 已提交
1133 1134
                "fused_softmax_mask_upper_triangle_grad",
                "flatten_contiguous_range_grad", "relu_grad"
1135 1136 1137 1138 1139
            ]
            forward_list = [
                "reshape2", "softmax_with_cross_entropy", "transpose2",
                "softmax", "cross_entropy2", "dropout", "tanh",
                ["slice_grad", "c_allgather"], "assign", "matmul_v2_grad_grad",
1140
                "elementwise_add_grad_grad", "shape", "sqrt",
Z
zhaoyingli 已提交
1141 1142
                "fused_softmax_mask_upper_triangle", "flatten_contiguous_range",
                "relu"
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
            ]
            if op.type in need_set_shape_list:
                for forward_op in block.ops:
                    idx = need_set_shape_list.index(op.type)
                    forward_op_name = forward_list[idx]
                    if forward_op.type in forward_op_name and forward_var_name in forward_op.input_arg_names:
                        op_dist_attr = dist_context.get_op_dist_attr_for_program(
                            forward_op)
                        break

            forward_input_dist_attr = op_dist_attr.get_input_dist_attr(
                forward_var_name)
            assert forward_input_dist_attr is not None, f"{forward_var_name, str(op)}"
            forward_var = vars[forward_var_name]
            forward_var_dist_attr = dist_context.get_tensor_dist_attr_for_program(
                forward_var)
            assert forward_var_dist_attr is not None
            grad_var = vars[var_name]
            ref_shape = infer_shape(block, forward_var, forward_var_dist_attr,
                                    forward_input_dist_attr)

            if list(grad_var.shape) != ref_shape:
                grad_var.desc.set_shape(ref_shape)
C
caozhou 已提交
1166 1167


1168 1169 1170 1171 1172 1173
OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
OpRole = core.op_proto_and_checker_maker.OpRole


def is_forward_op(op):
    op_role = int(op.attr('op_role'))
1174 1175
    return OP_ROLE_KEY in op.attr_names and (op_role == int(OpRole.Forward)
                                             or op_role == int(OpRole.Loss))
1176 1177 1178 1179 1180 1181 1182


def is_backward_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Backward)


1183 1184 1185 1186 1187
def is_optimize_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Optimize)


1188 1189 1190 1191 1192
def is_lr_sched_op(op):
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Optimize.LRSched)


J
JZ-LIANG 已提交
1193 1194
def is_loss_op(op):
    return OP_ROLE_KEY in op.attr_names and \
1195
        int(op.all_attrs()[OP_ROLE_KEY]) == (int(OpRole.Forward) | int(OpRole.Loss))
J
JZ-LIANG 已提交
1196 1197


1198 1199 1200 1201 1202 1203 1204
def is_loss_grad_op(op):
    if OP_ROLE_KEY not in op.attr_names:
        return False
    op_role = int(op.all_attrs()[OP_ROLE_KEY])
    return op_role & int(OpRole.Backward) and op_role & int(OpRole.Loss)


1205
def is_gradient_clip_op(op):
1206 1207 1208 1209
    return op.desc.has_attr("op_namescope") \
        and op.desc.attr("op_namescope").startswith("/gradient_clip")


1210 1211 1212 1213
def is_prim_op(op):
    return op.type.endswith("_p")


J
JZ-LIANG 已提交
1214 1215 1216 1217
def get_loss_op(block):
    loss_ops = []
    for op in block.ops:
        if is_loss_op(op):
1218 1219
            assert len(op.desc.output_arg_names()
                       ) == 1, "loss op should only output loss var"
J
JZ-LIANG 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
            loss_ops.append(op)

    assert len(loss_ops) == 1, "num of loss op is not equal to one"
    return loss_ops[0]


def set_var_dist_attr(dist_context, var, dims_mapping, process_mesh, **kwargs):
    tensor_dist_attr = TensorDistributedAttribute()
    tensor_dist_attr.dims_mapping = dims_mapping
    # TODO get global mesh group
    tensor_dist_attr.process_mesh = process_mesh
1231 1232 1233
    if "mark_annotated" in kwargs and kwargs["mark_annotated"]:
        tensor_dist_attr.mark_annotated("dims_mapping")
        tensor_dist_attr.mark_annotated("process_mesh")
J
JZ-LIANG 已提交
1234 1235 1236 1237
    dist_context.set_tensor_dist_attr_for_program(var, tensor_dist_attr)
    return tensor_dist_attr


1238 1239
def naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
        new_op, process_mesh, ref_mapping, ctx):
J
JZ-LIANG 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    assert process_mesh is not None
    assert ref_mapping is not None

    new_op_dist_attr = OperatorDistributedAttribute()

    for input_varname in new_op.desc.input_arg_names():
        new_op_dist_attr.set_input_dims_mapping(input_varname, ref_mapping)
    for output_varname in new_op.desc.output_arg_names():
        new_op_dist_attr.set_output_dims_mapping(output_varname, ref_mapping)

    new_op_dist_attr.process_mesh = process_mesh
    ctx.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


C
caozhou 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
def update_op_dims_mapping_by_default_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    # The following statement will be replaced by a more elegent way
    if op_desc.type() == "shape" or op_desc.type() == "slice":
        return False
    output_names = op_desc.output_names()
    xshape_arg_names = []
    if "XShape" in output_names:
        xshape_arg_names = op_desc.output("XShape")
    batch_dim_mappings = []
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if len(dims_mapping) > 1:
            for idx, mapping in enumerate(dims_mapping[1:]):
                assert mapping == -1, \
                    "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
                        .format(op_desc.type(), idx, mapping)
        batch_dim_mappings.append(dims_mapping[0])
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if len(dims_mapping) > 1:
                for idx, mapping in enumerate(dims_mapping[1:]):
                    assert mapping == -1, \
                        "{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
                            .format(op_desc.type(), idx, mapping)
            batch_dim_mappings.append(dims_mapping[0])
        else:
            assert dims_mapping[0] == -1, \
                "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part."\
                    .format(op_desc.type(), mapping)
            if len(dims_mapping) > 2:
                for idx, mapping in enumerate(dims_mapping[2:]):
                    assert mapping == -1, \
                        "{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part."\
                            .format(op_desc.type(), idx, mapping)
            batch_dim_mappings.append(dims_mapping[1])

    compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
    assert compatible_dim_mapping is not None, "There is no compatible dim mapping."
    for arg_name in op_desc.input_arg_names():
        serial_tensor = dist_op.get_serial_input(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if compatible_dim_mapping != dims_mapping[0]:
            dims_mapping[0] = compatible_dim_mapping
            changed = True
    for arg_name in op_desc.output_arg_names():
        serial_tensor = dist_op.get_serial_output(arg_name)
        if serial_tensor.is_parameter:
            continue
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if arg_name not in xshape_arg_names:
            if compatible_dim_mapping != dims_mapping[0]:
                dims_mapping[0] = compatible_dim_mapping
                changed = True
        else:
            if compatible_dim_mapping != dims_mapping[1]:
                dims_mapping[1] = compatible_dim_mapping
                changed = True

    return changed


def update_op_dims_mapping_by_elementwise_like_dist_impl(dist_op):
    changed = False
    op_dist_attr = dist_op.dist_attr
    op_desc = dist_op.serial_op.desc
    input_arg_names = op_desc.input_arg_names()
    input_dims_mapping_dict = {}
    input_dims_mapping_lens = {}
    max_dims_mapping_len = -1
    for arg_name in input_arg_names:
        dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
        if max_dims_mapping_len < len(dims_mapping):
            max_dims_mapping_len = len(dims_mapping)
        input_dims_mapping_dict[arg_name] = dims_mapping
        input_dims_mapping_lens[arg_name] = len(dims_mapping)

    dims_mapping_list = []
    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [-1 for _ in range(max_dims_mapping_len)]
            for i in range(input_dims_mapping_lens[arg_name]):
                new_idx = (max_dims_mapping_len -
                           input_dims_mapping_lens[arg_name]) + i
                new_dims_mapping[new_idx] = input_dims_mapping_dict[arg_name][i]
            dims_mapping_list.append(new_dims_mapping)
        else:
            dims_mapping_list.append(input_dims_mapping_dict[arg_name])
    output_arg_names = op_desc.output_arg_names()
    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        assert len(dims_mapping) == max_dims_mapping_len
        dims_mapping_list.append(dims_mapping)

    compatible_dims_mapping = compute_compatible_dims_mapping(dims_mapping_list)
    assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

    for arg_name in input_arg_names:
        if input_dims_mapping_lens[arg_name] < max_dims_mapping_len:
            new_dims_mapping = [
                -1 for _ in range(input_dims_mapping_lens[arg_name])
            ]
            for i in range(input_dims_mapping_lens[arg_name]):
                new_idx = (max_dims_mapping_len -
                           input_dims_mapping_lens[arg_name]) + i
                new_dims_mapping[i] = compatible_dims_mapping[new_idx]
            if new_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping)
                changed = True
        else:
            if compatible_dims_mapping != input_dims_mapping_dict[arg_name]:
                op_dist_attr.set_input_dims_mapping(arg_name,
                                                    compatible_dims_mapping)
                changed = True

    for arg_name in output_arg_names:
        dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
        if compatible_dims_mapping != dims_mapping:
            op_dist_attr.set_output_dims_mapping(arg_name,
                                                 compatible_dims_mapping)
            changed = True

    return changed
1388 1389


1390 1391
def get_all_distributed_main_program(serial_program_info, dist_context,
                                     parallelizer):
1392
    "Get all distributed main programs by dist_context."
1393
    from .dist_context import DistributedOperatorContext
1394
    cluster = serial_program_info.cluster
1395
    copied_parallelizer = copy.deepcopy(parallelizer)
1396 1397 1398 1399 1400 1401
    all_dist_main_program = []
    ranks = paddle.distributed.get_world_size() if cluster is None else len(
        cluster.get_all_devices("GPU"))
    for rank_id in range(ranks):
        used_dist_context = copy.deepcopy(dist_context)
        used_dist_context._dist_op_context = DistributedOperatorContext()
1402 1403
        _, _, dist_startup_program, dist_main_program, _ = copied_parallelizer._get_dist_program(
            rank_id, used_dist_context)
1404 1405 1406 1407 1408 1409
        all_dist_main_program.append(dist_main_program)

    return all_dist_main_program


class SerialProgramInfo:
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    def __init__(self,
                 train_program,
                 satrtup_program,
                 loss,
                 optimizer,
                 cluster=None):
        self._train_program = train_program
        self._startup_program = satrtup_program
        self._loss = loss
        self._optimizer = optimizer
        self._cluster = cluster

    @property
    def train_program(self):
        return self._train_program

    @property
    def startup_program(self):
        return self._startup_program

    @property
    def loss(self):
        return self._loss

    @property
    def optimizer(self):
        return self._optimizer

    @property
    def cluster(self):
        return self._cluster
1442 1443 1444


def get_standalone_cost_data(distributed_programs):
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    def _compute_runtime(op_cost, op, vars):
        runtime = 0
        try:
            runtime = float(op_cost["op_time"])
        except:
            return runtime
        op_config = op_cost["config"]
        total_static_input_size = 0
        total_actual_input_size = 0
        parsed_info = op_config.split("\n")
        variable = "(Variable)"
        for info in parsed_info:
            variable = "(Variable)" if "(Variable)" in info else "(list<Variable>"
            if variable in info:
                arg_name_lower = info[:info.find(variable) - 1]
                shape_left_boundary = info.find("[")
                shape_right_boundary = info.find("]")
                assert shape_left_boundary > 0 and shape_right_boundary > 0 and shape_right_boundary > shape_left_boundary, "Get shape failed."
1464 1465
                shape = info[shape_left_boundary +
                             1:shape_right_boundary].split(",")
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
                shape = list(map(lambda x: int(x.strip()), shape))
                dtype_factor = 1
                total_static_input_size += reduce(lambda x, y: x * y, shape)
                if op.type == "c_embedding":
                    arg_name_lower = "w" if arg_name_lower == "weight" else "ids"
                for arg_name in op.input_names:
                    if arg_name.lower() == arg_name_lower:
                        for var_name in op.input(arg_name):
                            var = vars[var_name]
                            total_actual_input_size += reduce(
                                lambda x, y: x * y, var.shape)
                        break
        assert total_static_input_size > 0 and total_actual_input_size > 0, "Get input size failed."

        actual_runtime = total_actual_input_size / total_static_input_size * runtime
        return actual_runtime

1483 1484
    import paddle.cost_model as cm
    cost_model = cm.CostModel()
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    cost_model.static_cost_data()
    DEFAULT_MULTIPLE = 2
    OP_NAME_MAPPING = {
        "c_embedding": "embedding",
        "matmul_v2": "matmul",
        "transpose2": "transpose",
        "reshape2": "reshape",
        "unsqueeze2": "unsqueeze",
        "reduce_sum": "sum",
        "elementwise_div": "divide"
    }

    standalone_cost_data = []
1498 1499 1500 1501
    # skip ops
    not_enum_ops = [
        "create_py_reader", "create_double_buffer_reader", "read", "assign"
    ]
1502 1503 1504 1505 1506 1507 1508 1509
    for distributed_program in distributed_programs:
        cost_data = {}
        vars = distributed_program.global_block().vars
        for op in distributed_program.global_block().ops:
            runtime = 0
            if op.type in not_enum_ops:
                cost_data[op.desc.id()] = runtime
                continue
1510 1511
            dtype = str(vars[op.input_arg_names[0]].dtype
                        ) if op.input_arg_names else "float32"
1512 1513 1514 1515 1516
            if int(op.attr('op_role')) == int(OpRole.Backward):
                if "_grad" in op.type:
                    forward_op_name = op.type[:-5]
                    if forward_op_name in OP_NAME_MAPPING.keys():
                        forward_op_name = OP_NAME_MAPPING[forward_op_name]
1517 1518 1519
                    op_cost = cost_model.get_static_op_time(forward_op_name,
                                                            forward=False,
                                                            dtype=dtype)
1520 1521 1522
                    if op_cost:
                        runtime = _compute_runtime(op_cost, op, vars)
                    else:
1523 1524
                        op_cost = cost_model.get_static_op_time(forward_op_name,
                                                                dtype=dtype)
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
                        if op_cost:
                            runtime = 2 * _compute_runtime(op_cost, op, vars)
            elif int(op.attr('op_role')) == int(OpRole.Forward):
                op_name = OP_NAME_MAPPING[
                    op.type] if op.type in OP_NAME_MAPPING.keys() else op.type
                op_cost = cost_model.get_static_op_time(op_name)
                if op_cost:
                    runtime = _compute_runtime(op_cost, op, vars)

            cost_data[op.desc.id()] = runtime

        standalone_cost_data.append(cost_data)

    return standalone_cost_data
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554


def set_dist_op_desc_original_id(dist_op_desc, op_desc, dist_context):
    op_id = op_desc.id()
    op_original_id = op_desc.original_id()
    # First, try to set the original id to the id of the op_desc
    if op_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_id)
        return
    # Second, try to set the original id to the original_id of the op_desc
    elif op_original_id in dist_context._dist_ops_for_program:
        dist_op_desc.set_original_id(op_original_id)
        return
    # Third, print error infomation if we cannot find the original id
    else:
        assert False, "Cannot find the original id in the distributed context"
1555 1556 1557 1558 1559 1560 1561 1562


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]
1563 1564 1565 1566 1567 1568 1569 1570


def debug_program(program, path, name):

    filename = os.path.join(
        path, name + '_program' + ".%d" % (paddle.distributed.get_rank()))
    with open(filename, 'w') as f:
        f.write(str(program))
1571 1572 1573 1574 1575 1576 1577


def ring_id_to_process_group(ring_id):
    for g in get_all_process_groups():
        if g.id == ring_id:
            return g
    return None
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589


def find_higher_order_backward_op(program):

    higher_order_op_suffix = ['_grad_grad', 'triple_grad']
    for block in program.blocks:
        for op in block.ops:
            for suffix in higher_order_op_suffix:
                if suffix in op.type:
                    return True

    return False
Z
zhaoyingli 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604


def get_lr(optimizer):
    if isinstance(optimizer, paddle.optimizer.Optimizer):
        return optimizer.get_lr()
    elif isinstance(optimizer, paddle.fluid.optimizer.Optimizer):
        if isinstance(optimizer._learning_rate, float):
            return optimizer._learning_rate
        else:
            return optimizer._learning_rate()
    else:
        raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                    " or `paddle.fluid.optimizer.Optimizer`, but got {}.".format(type(optimizer))
            )