test_random_seed.py 17.6 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.generator as generator

import time  # temp for debug
import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core


class TestGeneratorSeed(unittest.TestCase):
L
Leo Chen 已提交
29 30 31
    #     """
    #     Test cases for cpu generator seed.
    #     """
Y
yaoxuefeng 已提交
32 33 34 35 36 37

    def test_generator_uniform_random_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
38
        gen = paddle.seed(12312321111)
Y
yaoxuefeng 已提交
39
        x = fluid.layers.uniform_random([10], dtype="float32", min=0.0, max=1.0)
L
Leo Chen 已提交
40

Y
yaoxuefeng 已提交
41 42 43
        st1 = gen.get_state()
        x1 = fluid.layers.uniform_random(
            [10], dtype="float32", min=0.0, max=1.0)
L
Leo Chen 已提交
44

Y
yaoxuefeng 已提交
45
        gen.set_state(st1)
L
Leo Chen 已提交
46
        print(gen.get_state())
Y
yaoxuefeng 已提交
47 48
        x2 = fluid.layers.uniform_random(
            [10], dtype="float32", min=0.0, max=1.0)
L
Leo Chen 已提交
49

C
cnn 已提交
50
        paddle.seed(12312321111)
Y
yaoxuefeng 已提交
51 52
        x3 = fluid.layers.uniform_random(
            [10], dtype="float32", min=0.0, max=1.0)
L
Leo Chen 已提交
53

Y
yaoxuefeng 已提交
54 55 56 57 58 59 60 61 62 63 64 65
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_uniform_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
66
        gen = paddle.seed(123123143)
Y
yaoxuefeng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

97 98 99
    def test_gen_dropout_dygraph(self):
        fluid.enable_dygraph()

C
cnn 已提交
100
        gen = paddle.seed(111111111)
101 102 103 104 105 106 107 108 109 110 111 112
        st = gen.get_state()
        # x = np.arange(1,101).reshape(2,50).astype("float32")
        x = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        y = fluid.layers.dropout(x, 0.5)
        gen.manual_seed(111111111)
        #gen.set_state(st)
        x1 = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()
L
Leo Chen 已提交
113

114 115 116 117 118 119 120
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
            self.assertTrue(np.allclose(y_np, y1_np))

    def test_gen_dropout_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
121
        gen = paddle.seed(123123143)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x_1 = fluid.layers.uniform_random(shape=[2, 10])
            y_1 = fluid.layers.dropout(x_1, 0.5)
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program, feed={}, fetch_list=[y_1])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program, feed={}, fetch_list=[y_1])
        out1_np = np.array(out1[0])
        out2_np = np.array(out2[0])
L
Leo Chen 已提交
138

139 140 141 142 143 144 145 146
        if not core.is_compiled_with_cuda():
            print(">>>>>>> dropout static >>>>>>>")
            self.assertTrue(np.allclose(out1_np, out2_np))

    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
147
        gen = paddle.seed(12312321111)
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        x = fluid.layers.gaussian_random([10], dtype="float32")
        st1 = gen.get_state()
        x1 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.set_state(st1)
        x2 = fluid.layers.gaussian_random([10], dtype="float32")
        gen.manual_seed(12312321111)
        x3 = fluid.layers.gaussian_random([10], dtype="float32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_gaussian_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
168
        gen = paddle.seed(123123143)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
            result_2 = fluid.layers.gaussian_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> gaussian random static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
200 201 202 203 204 205
    def test_generator_randint_dygraph(self):
        """Test Generator seed."""
        gen = generator.Generator()

        fluid.enable_dygraph()

C
cnn 已提交
206
        gen = paddle.seed(12312321111)
207
        x = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
208
        st1 = gen.get_state()
209
        x1 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
210
        gen.set_state(st1)
211
        x2 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
212
        gen.manual_seed(12312321111)
213
        x3 = paddle.randint(low=10, shape=[10], dtype="int32")
Y
yaoxuefeng 已提交
214 215 216 217
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
218

Y
yaoxuefeng 已提交
219
        if not core.is_compiled_with_cuda():
220
            print(">>>>>>> randint dygraph >>>>>>>")
Y
yaoxuefeng 已提交
221 222 223
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

L
Leo Chen 已提交
224 225 226
    def test_generator_uniform_random_static(self):
        fluid.disable_dygraph()

C
cnn 已提交
227
        gen = paddle.seed(123123143)
L
Leo Chen 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
            result_2 = fluid.layers.uniform_random(shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
247

L
Leo Chen 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_randint_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
262
        gen = paddle.seed(12312321111)
L
Leo Chen 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        x = paddle.randint(low=1)
        st1 = gen.get_state()
        x1 = paddle.randint(low=1)
        gen.set_state(st1)
        x2 = paddle.randint(low=1)
        gen.manual_seed(12312321111)
        x3 = paddle.randint(low=1)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()
        if not core.is_compiled_with_cuda():
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_ranint_static(self):
279 280
        fluid.disable_dygraph()

C
cnn 已提交
281
        gen = paddle.seed(123123143)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randint(low=10, shape=[3, 4])
            result_2 = paddle.randint(low=10, shape=[3, 4])

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
            #gen.set_state(cur_state)
            gen.manual_seed(123123143)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randint static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_randperm_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

C
cnn 已提交
318
        gen = paddle.seed(12312321111)
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        x = paddle.randperm(10)
        st1 = gen.get_state()
        x1 = paddle.randperm(10)
        gen.set_state(st1)
        x2 = paddle.randperm(10)
        gen.manual_seed(12312321111)
        x3 = paddle.randperm(10)
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> randperm dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_randperm_static(self):

        fluid.disable_dygraph()

C
cnn 已提交
340
        paddle.seed(123123143)
341 342 343 344 345 346 347 348 349 350 351 352 353 354

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randperm(10)
            result_2 = paddle.randperm(10)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
L
Leo Chen 已提交
355

C
cnn 已提交
356
            paddle.seed(123123143)
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> randperm static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_generator_sampling_id_dygraph(self):
        """Test Generator seed."""
C
cnn 已提交
374
        gen = paddle.seed(12312321111)
375 376 377 378 379 380 381

        fluid.enable_dygraph()

        gen.manual_seed(12312321111)
        x = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0)
        y = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
382

383 384 385 386
        st1 = gen.get_state()
        x1 = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0)
        y1 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
387

388 389 390 391
        gen.set_state(st1)
        x2 = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0)
        y2 = fluid.layers.sampling_id(x)
L
Leo Chen 已提交
392

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        gen.manual_seed(12312321111)
        x3 = fluid.layers.uniform_random(
            [10, 10], dtype="float32", min=0.0, max=1.0)
        y3 = fluid.layers.sampling_id(x)

        x_np = y.numpy()
        x1_np = y1.numpy()
        x2_np = y2.numpy()
        x3_np = y3.numpy()

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_randperm_static(self):

        fluid.disable_dygraph()

C
cnn 已提交
412
        paddle.seed(123123143)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[10, 10])
            result_1 = fluid.layers.sampling_id(x)
            result_2 = fluid.layers.sampling_id(x)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])
L
Leo Chen 已提交
428

C
cnn 已提交
429
            paddle.seed(123123143)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

            out1_res1 = np.array(out1[0])
            out1_res2 = np.array(out1[1])
            out2_res1 = np.array(out2[0])
            out2_res2 = np.array(out2[1])

            if not core.is_compiled_with_cuda():
                print(">>>>>>> sampling id static >>>>>>>")
                self.assertTrue(np.allclose(out1_res1, out2_res1))
                self.assertTrue(np.allclose(out1_res2, out2_res2))
                self.assertTrue(not np.allclose(out1_res2, out1_res1))

    def test_gen_TruncatedNormal_initializer(self):
        fluid.disable_dygraph()

C
cnn 已提交
448
        gen = paddle.seed(123123143)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        cur_state = gen.get_state()

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[2, 10])
            result_1 = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0))
            result_2 = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0))

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        gen.manual_seed(123123143)
        with fluid.program_guard(train_program, startup_program):
            exe.run(startup_program)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        out1_res1 = np.array(out1[0])
        out1_res2 = np.array(out1[1])
        out2_res1 = np.array(out2[0])
        out2_res2 = np.array(out2[1])

        if not core.is_compiled_with_cuda():
            print(">>>>>>> sampling id static >>>>>>>")
            self.assertTrue(np.allclose(out1_res1, out2_res1))
            self.assertTrue(np.allclose(out1_res2, out2_res2))
            self.assertTrue(not np.allclose(out1_res2, out1_res1))

Y
yaoxuefeng 已提交
492 493 494

if __name__ == "__main__":
    unittest.main()