nets.py 26.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
M
minqiyang 已提交
16
import six
17
from . import layers
18
from .data_feeder import check_variable_and_dtype, convert_dtype
F
fengjiayi 已提交
19

20 21 22
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
23
    "glu",
24
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
25
    "img_conv_group",
26
]
D
dzhwinter 已提交
27

F
fengjiayi 已提交
28 29 30

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
31
                         filter_size,
F
fengjiayi 已提交
32 33
                         pool_size,
                         pool_stride,
C
chengduoZH 已提交
34
                         pool_padding=0,
C
chengduoZH 已提交
35
                         pool_type='max',
C
chengduoZH 已提交
36 37 38 39 40 41 42 43
                         global_pooling=False,
                         conv_stride=1,
                         conv_padding=0,
                         conv_dilation=1,
                         conv_groups=1,
                         param_attr=None,
                         bias_attr=None,
                         act=None,
X
Xin Pan 已提交
44
                         use_cudnn=True):
C
chengduoZH 已提交
45
    """
C
cnn 已提交
46
	:api_attr: Static Graph
S
swtkiwi 已提交
47

S
SunGaofeng 已提交
48
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
49 50

    Args:
S
SunGaofeng 已提交
51 52
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
53 54 55
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
56
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
57 58
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
59
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
60 61
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
62
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
63 64
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
65
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
66 67 68
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
69
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
70 71
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
72
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
73 74
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
75
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
76 77
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
78
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
79 80 81
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
96 97 98 99
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
100 101 102 103
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
104 105 106 107

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
108
            import paddle.fluid as fluid
C
cnn 已提交
109 110
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
111
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
112 113 114 115 116 117 118
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
F
fengjiayi 已提交
119 120 121 122
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
C
chengduoZH 已提交
123 124 125 126
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
F
fengjiayi 已提交
127
        param_attr=param_attr,
C
chengduoZH 已提交
128
        bias_attr=bias_attr,
C
chengduoZH 已提交
129
        act=act,
X
Xin Pan 已提交
130
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
131 132 133 134

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
135
        pool_type=pool_type,
C
chengduoZH 已提交
136
        pool_stride=pool_stride,
C
chengduoZH 已提交
137 138
        pool_padding=pool_padding,
        global_pooling=global_pooling,
X
Xin Pan 已提交
139
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
140 141 142 143 144 145 146 147 148
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
149
                   param_attr=None,
Q
Qiao Longfei 已提交
150
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
151
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
152
                   pool_stride=1,
C
chengduoZH 已提交
153
                   pool_type="max",
X
Xin Pan 已提交
154
                   use_cudnn=True):
Q
Qiao Longfei 已提交
155
    """
C
cnn 已提交
156
	:api_attr: Static Graph
S
swtkiwi 已提交
157

C
chengduoZH 已提交
158
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
C
cnn 已提交
159
    and Pool2D. According to the input arguments, img_conv_group will do serials of
C
chengduoZH 已提交
160
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
C
cnn 已提交
161
    result to Pool2D.
C
chengduoZH 已提交
162 163

    Args:
L
lvmengsi 已提交
164
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
165
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
C
cnn 已提交
166
        pool_size (int|list|tuple): The pooling size of Pool2D Layer. If pool_size
L
lvmengsi 已提交
167 168
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
cnn 已提交
169
        conv_padding (int|list|tuple): The padding size of the Conv2D Layer. If padding is
C
chengduoZH 已提交
170
            a list or tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
171
            Otherwise the conv_padding of all Conv2D Layers are the same. Default 1.
C
chengduoZH 已提交
172 173
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
C
cnn 已提交
174 175
            Otherwise the conv_filter_size of all Conv2D Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2D Layer that is not followed by BatchNorm.
C
chengduoZH 已提交
176
            Default: None.
C
cnn 已提交
177 178
        param_attr (ParamAttr): The parameters to the Conv2D Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2D Layer.
C
chengduoZH 已提交
179 180
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
C
cnn 已提交
181
            Conv2D Layer follows a BatchNorm. Default False.
C
chengduoZH 已提交
182 183 184 185
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
C
cnn 已提交
186
        pool_stride (int|list|tuple): The pooling stride of Pool2D layer. If pool_stride
C
chengduoZH 已提交
187 188 189 190 191 192 193 194 195
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
196
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
C
cnn 已提交
197
        BatchNorm, DropOut, and Pool2D, whose data type is the same with input.
C
chengduoZH 已提交
198 199 200 201

    Examples:
        .. code-block:: python

202
            import paddle.fluid as fluid
C
cnn 已提交
203 204 205
            import paddle
            paddle.enable_static()
            
L
lvmengsi 已提交
206
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
207 208 209 210 211 212 213
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
214 215 216
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
217
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
218 219 220 221 222

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
223
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
224 225 226 227
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
228
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
229 230 231
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

M
minqiyang 已提交
232
    for i in six.moves.range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
233 234 235 236 237 238 239 240 241
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
242
            param_attr=param_attr[i],
C
chengduoZH 已提交
243
            act=local_conv_act,
X
Xin Pan 已提交
244
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
245 246

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
247
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
248 249
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
250
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
251 252 253 254 255

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
256
        pool_stride=pool_stride,
X
Xin Pan 已提交
257
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
258
    return pool_out
D
dzhwinter 已提交
259 260 261 262 263


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
264
                       param_attr=None,
265
                       act="sigmoid",
266 267
                       pool_type="max",
                       bias_attr=None):
C
chengduoZH 已提交
268
    """
C
cnn 已提交
269
	:api_attr: Static Graph
S
swtkiwi 已提交
270

S
SunGaofeng 已提交
271 272 273 274 275
    **This api takes input as an LoDTensor. If input is a Tensor, please use** 
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv` 
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
276 277

    Args:
S
SunGaofeng 已提交
278 279 280
        input (Variable): 2-D LoDTensor, the input of sequence_conv, 
            which supports variable-time length input sequence. 
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
281
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
282
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
283 284
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
285 286 287
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
        act (str|None): Activation type for Sequence_conv Layer. 
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
288 289 290
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
291 292 293 294 295
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
296

S
SunGaofeng 已提交
297 298 299 300 301 302
    Returns:
        The final result after sequence_conv and sequence_pool. 
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
303 304 305 306

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
307
            import paddle.fluid as fluid
C
cnn 已提交
308 309
            import paddle
            paddle.enable_static()
S
SunGaofeng 已提交
310
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
311 312
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
313
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
314 315 316 317 318 319 320
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
321 322

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
D
dzhwinter 已提交
323 324 325 326
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
327
        param_attr=param_attr,
328
        bias_attr=bias_attr,
329
        act=act)
D
dzhwinter 已提交
330

331
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
332
    return pool_out
G
guosheng 已提交
333 334 335 336


def glu(input, dim=-1):
    """
C
cnn 已提交
337
	:api_attr: Static Graph
S
swtkiwi 已提交
338

Y
Yibing Liu 已提交
339 340 341
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` , 
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` . 
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
342
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
343
    following:
G
guosheng 已提交
344 345 346 347 348

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
349
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
350
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
351

G
guosheng 已提交
352
    Args:
Y
Yibing Liu 已提交
353 354 355 356
        input (Variable): The input variable which is a Tensor or LoDTensor. 
                          The supported data types include float32, float64 
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
357
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
358 359

    Returns:
Y
Yibing Liu 已提交
360
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
361 362 363 364

    Examples:
        .. code-block:: python

365
            import paddle.fluid as fluid
C
cnn 已提交
366 367 368
            import paddle
            paddle.enable_static()
            
Y
Yibing Liu 已提交
369
            data = fluid.data(
Y
Yibing Liu 已提交
370 371 372
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
373
    """
374 375
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             "glu")
G
guosheng 已提交
376
    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
377 378
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
379
    return out
380 381


Y
ying 已提交
382 383 384
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
385
                                 num_heads=1,
Y
ying 已提交
386
                                 dropout_rate=0.):
387
    """
C
cnn 已提交
388
	:api_attr: Static Graph
S
swtkiwi 已提交
389

G
Guo Sheng 已提交
390
    This interface Multi-Head Attention using scaled dot product.
391
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
392 393 394
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
395

G
Guo Sheng 已提交
396
    .. math::
397

G
Guo Sheng 已提交
398 399 400
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
401

G
Guo Sheng 已提交
402
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
403

G
Guo Sheng 已提交
404 405 406 407 408 409
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
410

Y
ying 已提交
411
    Args:
G
Guo Sheng 已提交
412 413 414 415 416 417 418 419 420 421 422 423
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
424
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
425 426 427
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
428 429

    Returns:
G
Guo Sheng 已提交
430 431 432 433 434
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
435

Y
ying 已提交
436
    Raises:
437
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
438
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
439
        ValueError: The hidden size of queries and keys should be the same.
440
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
441 442
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
443

444 445 446
    Examples:
        .. code-block:: python

447
            import paddle.fluid as fluid
C
cnn 已提交
448 449 450
            import paddle
            paddle.enable_static()
            
G
Guo Sheng 已提交
451 452 453
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
454
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
455
            contexts.shape  # [3, 5, 10]
456
    """
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    check_variable_and_dtype(queries, 'queries', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(keys, 'keys', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(values, 'values', ['float32', 'float64'],
                             "scaled_dot_product_attention")

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
            " keys.dtype = %s, values.dtype) = %s." %
            (convert_dtype(queries.dtype), convert_dtype(keys.dtype),
             convert_dtype(values.dtype)))

Y
ying 已提交
472 473
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
474 475 476 477
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
            "len(keys.shape) = %d, len(values.shape) = %d." %
            (len(queries.shape), len(keys.shape), len(values.shape)))
Y
ying 已提交
478 479 480

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
481 482 483
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
            % (queries.shape[-1], keys.shape[-1]))
Y
ying 已提交
484 485
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
486 487 488
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2]))
Y
ying 已提交
489 490 491 492 493 494 495 496 497
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

Y
ying 已提交
498
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
515 516 517 518 519 520 521 522
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
523 524
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
525
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
526 527 528
        dimensions.

        Args:
Y
ying 已提交
529 530
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
531 532

        Returns:
Y
ying 已提交
533 534
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
535
        """
Y
ying 已提交
536 537
        if num_heads == 1:
            return x
538

Y
ying 已提交
539
        hidden_size = x.shape[-1]
540 541 542
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
543
        reshaped = layers.reshape(
544 545
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
546

T
tianshuo78520a 已提交
547
        # permute the dimensions into:
548 549 550 551
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
552
        """
T
tianshuo78520a 已提交
553
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
554 555 556 557 558 559 560 561 562 563 564
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

Y
ying 已提交
565
        if len(x.shape) == 3: return x
566 567 568
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
569
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
570
        return layers.reshape(
571
            x=trans_x,
572 573 574 575 576
            shape=list(
                map(int, [
                    trans_x.shape[0], trans_x.shape[1], trans_x.shape[2] *
                    trans_x.shape[3]
                ])))
577

Y
ying 已提交
578 579 580 581 582
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
583 584

    key_dim_per_head = keys.shape[-1] // num_heads
585
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
586
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
587

Y
ying 已提交
588
    weights = layers.reshape(
589
        x=layers.reshape(
Y
ying 已提交
590
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
591
        shape=product.shape)
Y
ying 已提交
592
    if dropout_rate:
G
guosheng 已提交
593 594
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False)
Y
ying 已提交
595 596
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)