pybind.cc 16.5 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pybind/protobuf.h"
16

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
18
#include "paddle/framework/lod_tensor.h"
19
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
20
#include "paddle/operators/cond_op.h"
21
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
26
#include "paddle/pybind/exception.h"
L
Luo Tao 已提交
27
#include "paddle/pybind/pybind.h"
28
#include "paddle/pybind/tensor_py.h"
29
#include "paddle/string/to_string.h"
30

31
namespace paddle {
32
namespace pybind {
33 34 35 36 37
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
38
bool IsCompileGPU() {
39
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
40 41 42 43 44 45
  return false;
#else
  return true;
#endif
}

46
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
47
  py::module m("core", "C++ core of PaddlePaddle");
48

49 50 51 52
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
53 54
  BindException(m);

55 56 57
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
58
      .def("get_dims",
59
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
60
      .def("set_dims",
Q
qijun 已提交
61
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
62
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
63 64
           })
      .def("alloc_float",
Y
Yu Yang 已提交
65
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
66
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
67
           })
Q
qijun 已提交
68
      .def("alloc_float",
Y
Yu Yang 已提交
69
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
70
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
71 72
           })
      .def("alloc_int",
Y
Yu Yang 已提交
73
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
74
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
75
           })
Q
qijun 已提交
76
      .def("alloc_int",
Y
Yu Yang 已提交
77
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
78
             self.mutable_data<int>(place);
Q
qijun 已提交
79
           })
Y
Yu Yang 已提交
80 81
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
82
      .def("set", PyCPUTensorSetFromArray<double>)
83
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
84 85
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
86
      .def("set", PyCUDATensorSetFromArray<double>)
Q
qijun 已提交
87
#endif
88
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
89 90 91 92 93
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
94

95
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
96 97
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
98 99 100
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
101
#ifndef PADDLE_WITH_CUDA
102
            new (&instance) LoDTensor(lod);
103
#else
Y
Yu Yang 已提交
104
             LoD new_lod;
105 106
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
107
             new (&instance) LoDTensor(new_lod);
108
#endif
109
          })
D
dangqingqing 已提交
110
      .def("set_lod",
111
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
112
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
113
             self.set_lod(lod);
114
#else
Y
Yu Yang 已提交
115
             LoD new_lod;
116 117 118 119
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
120
           })
121
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
122
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
123
        return self.lod();
124 125 126 127 128
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
129
               [](Vector<size_t> item) ->
130 131 132 133 134 135 136 137
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
138 139
      });

140
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
141 142 143

All parameter, weight, gradient are variables in Paddle.
)DOC")
144
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
145
      .def("set_int",
146 147
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
148 149 150 151 152 153 154
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
155
      .def("get_tensor",
156 157
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
158 159
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
160
      .def("get_net",
D
dongzhihong 已提交
161 162
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
163
           },
Y
Yu Yang 已提交
164
           py::return_value_policy::reference);
165

166
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
167
      .def("var",
168
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
169
             return self.Var(name);
Y
Yu Yang 已提交
170
           },
171
           py::return_value_policy::reference)
172
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
173
      .def(py::init<>())
174
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
175
           py::return_value_policy::reference)
176
      .def("drop_kids", &Scope::DropKids);
177

Y
Yu Yang 已提交
178 179
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
180 181
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
182 183 184 185

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
186
      std::string str;
Y
Yu Yang 已提交
187
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
188
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
189 190
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
191 192
    return ret_values;
  });
193 194 195
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
196 197
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
198
  // clang-format off
Y
Yu Yang 已提交
199
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
200 201
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
202
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
203 204 205 206 207
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
208
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
209
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
210
#else
Q
qijun 已提交
211
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
212
#endif
Q
qijun 已提交
213
                  });
Q
qijun 已提交
214
  // clang-format on
Q
qijun 已提交
215

216 217 218
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
219

220 221 222
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
223

Y
Yu Yang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
240
      .def("run",
241
           [](OperatorBase &self, const Scope &scope,
242 243 244 245
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
246 247 248 249 250 251 252
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
253 254
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
255
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
256
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
257 258 259 260
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
261

Y
Yu Yang 已提交
262 263 264 265 266 267 268
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
269 270
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
271 272 273 274
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
275

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
326
  // recurrent_op
Y
Yu Yang 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
340 341 342 343
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto rnn_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
      .def("set_stepnet",
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
               -> void { self.SetStepNet(net.Clone()); })
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.state(name); })
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_input(name); })
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
               -> const TensorArray & { return self.step_output(name); });

Z
cond op  
zchen0211 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto cond_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

394 395
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
396
  m.def("is_compile_gpu", IsCompileGPU);
Q
init  
qijun 已提交
397 398 399 400 401 402
  m.def("set_feed_variable", SetFeedVariable<float>);
  // m.def("set_feed_variable", SetFeedVariable<double>);
  // m.def("set_feed_variable", SetFeedVariable<int>);
  m.def("get_fetch_variable", GetFetchVariable<float>);
  // m.def("get_fetch_variable", GetFetchVariable<double>);
  // m.def("get_fetch_variable", GetFetchVariable<int>);
Q
qijun 已提交
403

F
fengjiayi 已提交
404 405 406 407
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
408

409
  return m.ptr();
L
Luo Tao 已提交
410
}
411
}  // namespace pybind
412
}  // namespace paddle