collective.py 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
from ..fluid.layer_helper import LayerHelper
18 19 20 21 22 23 24 25
from ..fluid.framework import Variable
from ..fluid.framework import OpProtoHolder
from ..fluid.framework import in_dygraph_mode
from ..fluid.framework import convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.data_feeder import check_type
from ..fluid.data_feeder import check_dtype
26 27 28 29
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
from ..fluid.dygraph.parallel import prepare_context
import paddle
30
from .fleet import fleet
31 32 33
import paddle.fluid as fluid
import paddle.fluid.core as core

34
__all__ = []
35 36 37


class ReduceOp:
L
lilong12 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    """
    Specify the type of operation used for element-wise reductions.
    It should be one of the following values:

        ReduceOp.SUM

        ReduceOp.MAX

        ReduceOp.MIN

        ReduceOp.PROD

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data, op=ReduceOp.SUM)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
    """
69 70 71 72 73 74
    SUM = 0
    MAX = 1
    MIN = 2
    PROD = 3


K
kuizhiqing 已提交
75 76 77 78
class Group():
    """
    The abstract representation of group.
    """
79

K
kuizhiqing 已提交
80
    def __init__(self, rank, rank_num, id=0, ranks=[]):
81 82
        self.rank = rank
        self.nranks = rank_num
K
kuizhiqing 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        self.id = id
        self.ranks = ranks

    def is_member(self):
        if self.rank < 0:
            return False
        if self.nranks < 2:
            return False
        return True

    def get_group_rank(self, rank):
        if self.id == 0:
            return rank
        if self.is_member() and rank in self.ranks:
            return self.ranks.index(rank)
        else:
            return -1


_global_env = None


def _get_global_env():
    global _global_env
    if not _global_env:
        _global_env = paddle.distributed.ParallelEnv()
    return _global_env


# group map : the map of all group, 0 for GlobalGroup
# Dict[int, Group]
_group_map = {}


def _get_group_map():
    global _group_map
    if not _group_map:
        genv = _get_global_env()
        _group_map[0] = Group(genv.rank, genv.world_size, 0)
    return _group_map


def _get_global_group():
    return _get_group_map()[0]


def _new_ring_id():
    return len(_get_group_map()) + max(_get_global_env().nrings, 9)


def get_group(id=0):
    """

    Get group instance by group id.

    Args:
K
kuizhiqing 已提交
139
        id (int): the group id. Default value is 0.
K
kuizhiqing 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    Returns:
        Group: the group instance.

    Examples:
        .. code-block:: python

            ...
            gid = paddle.distributed.new_group([2,4,6])
            paddle.distributed.get_group(gid.id)

    """

    gm = _get_group_map()
    return gm[group] if group in gm else None


S
ShenLiang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
def barrier(group=None):
    """

    Barrier among all participators in the group.

    Args:
        group (Group): The group instance return by new_group or None for global default group.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            paddle.distributed.barrier()
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    op_type = 'barrier'
    temp = fill_constant([1], dtype="int32", value="1")
    if in_dygraph_mode():
        return core.ops.barrier(temp, temp, 'ring_id', ring_id)
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'group' for barrier must be int.")
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [temp]},
        attrs={'ring_id': ring_id})


K
kuizhiqing 已提交
197 198 199
def new_group(ranks=None, backend=None):
    """

K
kuizhiqing 已提交
200
    Creates a new distributed communication group.
K
kuizhiqing 已提交
201 202

    Args:
K
kuizhiqing 已提交
203
        ranks (list): The global ranks of group members.
K
kuizhiqing 已提交
204 205 206
        backend (str): The backend used to create group, only nccl is supported now.

    Returns:
K
kuizhiqing 已提交
207
        Group: The group instance.
K
kuizhiqing 已提交
208 209 210 211 212 213 214

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
215 216 217
            tindata = paddle.randn(shape=[2, 3])
            gp = paddle.distributed.new_group([2,4,6])
            paddle.distributed.all_reduce(tindata, group=gp, use_calc_stream=False)
K
kuizhiqing 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    """

    if not backend:
        backend = 'nccl'
    assert backend == 'nccl', ("backend other than nccl is not supported yet")

    genv = _get_global_env()
    global_rank = genv.rank

    ring_id = _new_ring_id()

    global _group_map
    if global_rank not in ranks:
        gp = Group(-1, -1, ring_id, ranks)
        _group_map[ring_id] = gp
        return gp

    ranks = sorted(ranks)
    group_rank = ranks.index(global_rank)
    group_size = len(ranks)
    gp = Group(group_rank, group_size, ring_id, ranks)
    _group_map[ring_id] = gp

    if group_size < 2:
        return gp

    strategy = core.ParallelStrategy()
    strategy.nranks = group_size
    strategy.local_rank = group_rank
    strategy.trainer_endpoints = [genv.trainer_endpoints[i] for i in ranks]
    strategy.current_endpoint = genv.current_endpoint
    strategy.nrings = 1

    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(genv.device_id)
        core.NCCLParallelContext(strategy, place).init_with_ring_id(ring_id)
    else:
K
kuizhiqing 已提交
256
        assert False, ("no cuda device found")
S
ShenLiang 已提交
257 258
    # need to barrier to construct group
    barrier(gp)
K
kuizhiqing 已提交
259 260
    return gp

261

K
kuizhiqing 已提交
262 263 264 265 266 267 268 269
def wait(tensor, group=None, use_calc_stream=True):
    """

    wait to sync stream for group.

    Args:
        tensor (Tensor): The Tensor used before sync.
        group (Group): The Group instance to perform sync.
K
kuizhiqing 已提交
270 271
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
K
kuizhiqing 已提交
272 273 274 275 276 277 278 279 280 281

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

            paddle.distributed.init_parallel_env()
K
kuizhiqing 已提交
282
            tindata = paddle.randn(shape=[2, 3])
K
kuizhiqing 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
            paddle.distributed.all_reduce(tindata, use_calc_stream=True)
            paddle.distributed.wait(tindata)

    """

    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id

    if use_calc_stream:
        _sync_calc_stream(tensor)
    else:
        _sync_comm_stream(tensor, ring_id)


def _sync_calc_stream(tensor):

    if in_dygraph_mode():
        return core.ops.c_sync_calc_stream(tensor, tensor)

    op_type = 'c_sync_calc_stream'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]}, )
311

312

K
kuizhiqing 已提交
313
def _sync_comm_stream(tensor, ring_id=0):
314

K
kuizhiqing 已提交
315 316 317
    if in_dygraph_mode():
        return core.ops.c_sync_comm_stream([tensor], [tensor], 'ring_id',
                                           ring_id)
318

K
kuizhiqing 已提交
319
    op_type = 'c_sync_comm_stream'
320

K
kuizhiqing 已提交
321 322 323 324 325 326 327 328 329
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={'ring_id': ring_id}, )


def broadcast(tensor, src, group=None, use_calc_stream=True):
330 331 332 333 334 335 336 337
    """

    Broadcast a tensor from the source to all others.

    Args:
        tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank.
K
kuizhiqing 已提交
338
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
339 340
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
341 342 343 344 345 346 347

    Returns:
        None.

    Examples:
        .. code-block:: python

348 349 350 351 352 353 354 355 356 357 358 359 360 361
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.broadcast(data, 1)
            out = data.numpy()
            # [[1, 2, 3], [1, 2, 3]]
362
    """
K
kuizhiqing 已提交
363 364 365 366 367 368 369 370 371

    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
372
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
373

374
    if in_dygraph_mode():
K
kuizhiqing 已提交
375 376 377
        return core.ops.c_broadcast(tensor, tensor, 'root', gsrc,
                                    'use_calc_stream', use_calc_stream,
                                    'ring_id', ring_id)
378 379 380 381 382 383 384 385 386 387 388 389

    op_type = 'c_broadcast'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'broadcast')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
390 391 392
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
            'ring_id': ring_id,
393 394 395
        })


K
kuizhiqing 已提交
396
def all_reduce(tensor, op=ReduceOp.SUM, group=None, use_calc_stream=True):
397 398 399 400 401 402 403
    """

    Reduce a tensor over all ranks so that all get the result.

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
404
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
405
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
406 407
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
408 409 410 411 412 413 414

    Returns:
        None.

    Examples:
        .. code-block:: python

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
            import numpy as np
            import paddle
            from paddle.distributed import ReduceOp
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.all_reduce(data)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
430
    """
K
kuizhiqing 已提交
431 432 433 434
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
435 436
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
437 438
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
439
        elif op == ReduceOp.MAX:
440 441
            return core.ops.c_allreduce_max_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
442
        elif op == ReduceOp.MIN:
443 444
            return core.ops.c_allreduce_min_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
445
        elif op == ReduceOp.PROD:
446 447
            return core.ops.c_allreduce_prod_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id)
448 449
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
450
        return out
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for all_reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")
    if op == ReduceOp.SUM:
        op_type = 'c_allreduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_allreduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_allreduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_allreduce_prod'
K
kuizhiqing 已提交
466 467
    if not isinstance(ring_id, int):
        raise ValueError("The type of 'ring_id' for all_reduce should be int.")
468 469 470 471 472
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
K
kuizhiqing 已提交
473 474
        attrs={'ring_id': ring_id,
               'use_calc_stream': use_calc_stream})
475 476


K
kuizhiqing 已提交
477
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, use_calc_stream=True):
478 479 480 481 482 483 484 485
    """

    Reduce a tensor to the destination from all others.

    Args:
        tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
K
kuizhiqing 已提交
486
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. Default value is ReduceOp.SUM.
K
kuizhiqing 已提交
487
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
488 489
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
490 491 492 493 494 495 496

    Returns:
        None.

    Examples:
        .. code-block:: python

497 498 499 500 501 502 503 504 505 506 507 508 509 510
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data = np.array([[4, 5, 6], [4, 5, 6]])
            else:
                np_data = np.array([[1, 2, 3], [1, 2, 3]])
            data = paddle.to_tensor(np_data)
            paddle.distributed.reduce(data, 0)
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]]
511
    """
K
kuizhiqing 已提交
512 513 514 515 516 517 518 519
    if group is not None and not group.is_member():
        return

    if not isinstance(dst, int):
        raise ValueError("dst should be int.")

    ring_id = 0 if group is None else group.id
    gdst = dst if group is None else group.get_group_rank(dst)
K
kuizhiqing 已提交
520
    assert gdst >= 0, ("dst rank out of group, need global rank")
K
kuizhiqing 已提交
521

522 523 524
    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_reduce_sum(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
525 526
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
527 528
        elif op == ReduceOp.MAX:
            return core.ops.c_reduce_max(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
529 530
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
531 532
        elif op == ReduceOp.MIN:
            return core.ops.c_reduce_min(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
533 534
                                         use_calc_stream, 'ring_id', ring_id,
                                         'root_id', gdst)
535 536
        elif op == ReduceOp.PROD:
            return core.ops.c_reduce_prod(tensor, tensor, 'use_calc_stream',
K
kuizhiqing 已提交
537 538
                                          use_calc_stream, 'ring_id', ring_id,
                                          'root_id', gdst)
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        else:
            raise ValueError("Unknown parameter: {}.".format(op))

    op_type = 'c_reduce'
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_reduce')
    if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]:
        raise ValueError("The op for reduce must be one of educeOp.PROD, "
                         "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.")

    if op == ReduceOp.SUM:
        op_type = 'c_reduce_sum'
    elif op == ReduceOp.MAX:
        op_type = 'c_reduce_max'
    elif op == ReduceOp.MIN:
        op_type = 'c_reduce_min'
    elif op == ReduceOp.PROD:
        op_type = 'c_reduce_prod'

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
565 566 567
            'ring_id': ring_id,
            'use_calc_stream': use_calc_stream,
            'root_id': gdst,
568 569 570
        })


K
kuizhiqing 已提交
571
def all_gather(tensor_list, tensor, group=None, use_calc_stream=True):
572 573 574 575 576 577 578 579 580
    """

    Gather tensors from all participators and all get the result.

    Args:
        tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32 or int64.
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
K
kuizhiqing 已提交
581
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
582 583
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
584 585 586 587 588 589 590

    Returns:
        None.

    Examples:
        .. code-block:: python

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            tensor_list = []
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([[4, 5, 6], [4, 5, 6]])
                np_data2 = np.array([[4, 5, 6], [4, 5, 6]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data1)
            else:
                np_data1 = np.array([[1, 2, 3], [1, 2, 3]])
                np_data2 = np.array([[1, 2, 3], [1, 2, 3]])
                data1 = paddle.to_tensor(np_data1)
                data2 = paddle.to_tensor(np_data2)
                paddle.distributed.all_gather(tensor_list, data2)
610
    """
K
kuizhiqing 已提交
611 612 613 614 615 616
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    nranks = _get_global_group().nranks if group is None else group.nranks

617 618 619
    op_type = 'c_allgather'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
K
kuizhiqing 已提交
620

621
    if in_dygraph_mode():
K
kuizhiqing 已提交
622 623
        core.ops.c_allgather(tensor, out, 'use_calc_stream', use_calc_stream,
                             'ring_id', ring_id, 'nranks', nranks)
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    else:
        if not isinstance(tensor_list, list):
            raise ValueError("The type of 'tensor_list' for all_gather "
                             "should be list.")
        for elem in tensor_list:
            check_variable_and_dtype(
                elem, 'tensor_list',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'all_gather')
        check_variable_and_dtype(
            tensor, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather')
        helper.append_op(
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [out]},
            attrs={
K
kuizhiqing 已提交
641 642 643
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                'nranks': nranks
644 645
            })

K
kuizhiqing 已提交
646
    tensor_list.extend(paddle.split(out, nranks, 0))
647 648


K
kuizhiqing 已提交
649
def scatter(tensor, tensor_list=None, src=0, group=None, use_calc_stream=True):
650 651 652 653 654 655 656
    """

    Scatter a tensor to all participators.

    Args:
        tensor (Tensor): The output Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
657
        tensor_list (list|tuple): A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type
K
kuizhiqing 已提交
658 659
            should be float16, float32, float64, int32 or int64. Default value is None.
        src (int): The source rank id. Default value is 0.
K
kuizhiqing 已提交
660
        group (Group): The group instance return by new_group or None for global default group.
K
kuizhiqing 已提交
661 662
        use_calc_stream (bool): Wether to use calculation stream (True) or communication stream (False).
            Default to True.
663 664 665 666 667 668 669

    Returns:
        None.

    Examples:
        .. code-block:: python

670 671 672 673
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env

674 675
            # required: gpu

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            if paddle.distributed.ParallelEnv().local_rank == 0:
                np_data1 = np.array([7, 8, 9])
                np_data2 = np.array([10, 11, 12])
            else:
                np_data1 = np.array([1, 2, 3])
                np_data2 = np.array([4, 5, 6])
            data1 = paddle.to_tensor(np_data1)
            data2 = paddle.to_tensor(np_data2)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                paddle.distributed.scatter(data1, src=1)
            else:
                paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1)
            out = data1.numpy()
691
    """
K
kuizhiqing 已提交
692 693 694 695 696 697 698 699
    if group is not None and not group.is_member():
        return

    if not isinstance(src, int):
        raise ValueError("src should be int.")

    ring_id = 0 if group is None else group.id
    gsrc = src if group is None else group.get_group_rank(src)
K
kuizhiqing 已提交
700
    assert gsrc >= 0, ("src rank out of group, need global rank")
K
kuizhiqing 已提交
701 702 703
    rank = _get_global_group().rank if group is None else group.rank
    nranks = _get_global_group().nranks if group is None else group.nranks

704
    op_type = 'c_scatter'
K
kuizhiqing 已提交
705 706

    if rank != gsrc:
707 708 709 710 711
        tensor_list = []
        for _ in range(nranks):
            tensor_list.append(tensor)
    temp = paddle.concat(tensor_list, axis=0)
    if in_dygraph_mode():
K
kuizhiqing 已提交
712 713 714
        return core.ops.c_scatter(temp, tensor, 'use_calc_stream',
                                  use_calc_stream, 'ring_id', ring_id, 'nranks',
                                  nranks, 'root', gsrc)
715 716 717 718 719 720 721 722 723
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'scatter')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [temp]},
        outputs={'Out': [tensor]},
        attrs={
K
kuizhiqing 已提交
724 725 726
            'ring_id': ring_id,
            'root': gsrc,
            'use_calc_stream': use_calc_stream,
727 728 729 730
            'nranks': nranks,
        })


731
def _c_identity(tensor, group=None):
L
lilong12 已提交
732 733 734 735 736 737 738 739 740 741 742
    """
    Return a copy of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
743 744 745 746 747 748 749
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_identity(tensor, 'use_calc_stream', True, 'ring_id',
                                   ring_id, 'use_model_parallel', True)
L
lilong12 已提交
750 751 752
    op_type = 'c_identity'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
753

L
lilong12 已提交
754 755 756
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_identity')
757

L
lilong12 已提交
758 759 760 761 762
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
763
            'ring_id': ring_id,
L
lilong12 已提交
764 765 766 767 768 769
            'use_calc_stream': True,
            'use_model_parallel': True,
        })
    return out


770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
def _c_concat(tensor, nranks, group=None):
    """
    Return allgather of the tensor, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_concat(tensor, 'ring_id', ring_id, 'use_calc_stream',
                                 True, 'nranks', nranks, 'use_model_parallel',
                                 True)

    op_type = 'c_concat'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)

    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_concat')

    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            'use_model_parallel': True,
            'nranks': nranks
        })
    return out


def _c_split(tensor, rank, nranks, group=None):
L
lilong12 已提交
813 814 815 816 817 818 819 820 821 822 823 824
    """
    Split tensor evenly among all members, mainly used with model parallel.

    Args:
        tensor (Tensor): The input Tensor. Its data type
            should be float16, float32, float64, int32 or int64.
        rank (int): The rank of the current process.
        group (int): The id of the process group to work on.

    Returns:
        Tensor.
    """
825 826 827 828 829 830 831 832 833
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        return core.ops.c_split(tensor, 'use_calc_stream', True, 'ring_id',
                                ring_id, 'rank', rank, 'nranks', nranks,
                                'use_model_parallel', True)

L
lilong12 已提交
834 835 836
    op_type = 'c_split'
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(dtype=tensor.dtype)
837

L
lilong12 已提交
838 839 840
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        '_c_split')
841

L
lilong12 已提交
842 843 844 845 846
    helper.append_op(
        type=op_type,
        inputs={'X': tensor},
        outputs={'Out': out},
        attrs={
847
            'ring_id': ring_id,
L
lilong12 已提交
848 849 850 851 852 853 854 855
            'use_calc_stream': True,
            'rank': rank,
            'nranks': nranks,
            'use_model_parallel': True,
        })
    return out


856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
def _mp_allreduce(tensor,
                  op=ReduceOp.SUM,
                  group=None,
                  use_calc_stream=True,
                  use_model_parallel=True):
    """[it is same as allreduce above, but it suuports model parallel. And it support inplace startegy]
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    if in_dygraph_mode():
        if op == ReduceOp.SUM:
            return core.ops.c_allreduce_sum_(
                tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id,
                "use_model_parallel", use_model_parallel)
        else:
            raise ValueError("Unknown parameter: {}.".format(op))
    else:
        raise NotImplementedError("No support _mp_allreduce in dygraph mode.")


L
lilong12 已提交
878 879 880 881 882 883 884 885 886 887 888
def _parallel_linear(x,
                     num_rows,
                     num_cols,
                     axis,
                     param_attr,
                     bias_attr,
                     gather_out,
                     inner_rank,
                     nranks,
                     split_tensor,
                     name,
889
                     group=None):
890 891 892
    """
    Parallel Linear
    """
893 894 895 896
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

L
lilong12 已提交
897 898 899
    if axis == 0:
        if split_tensor:
            x = _c_split(x, inner_rank, nranks, group=group)
900
    else:
L
lilong12 已提交
901 902
        x = _c_identity(x, group=group)

903 904 905 906 907 908 909 910 911 912
    linear = paddle.nn.Linear(
        num_rows,
        num_cols,
        weight_attr=param_attr,
        bias_attr=bias_attr,
        name=name)

    linear_out = linear(x)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
L
lilong12 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
    startup_block.vars[linear.weight.name].is_distributed = True
    main_block.vars[linear.weight.name].is_distributed = True

    if not gather_out: return linear_out

    op_type = 'c_allreduce_sum' if axis == 0 else 'c_concat'
    out_shape = list(linear_out.shape)
    out_shape[0] *= 1 if axis == 0 else nranks
    out = main_block.create_var(
        shape=out_shape,
        dtype=linear_out.dtype,
        type=linear_out.type,
        lod_level=linear_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=linear_out.desc.need_check_feed())
    if axis == 0:
        main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
935
                'ring_id': ring_id,
L
lilong12 已提交
936 937 938 939 940 941 942 943 944
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    else:
        main_block.append_op(
            type='c_concat',
            inputs={'X': linear_out},
            outputs={'Out': out},
            attrs={
945
                'ring_id': ring_id,
L
lilong12 已提交
946 947 948 949 950
                'nranks': nranks,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
    return out
951 952


L
lilong12 已提交
953 954 955 956 957 958 959
def _parallel_embedding(x,
                        per_part_embeddings,
                        origin_size,
                        param_attr,
                        inner_rank,
                        num_partitions,
                        name,
960
                        group=None):
961 962 963
    """
    Parallel Embedding
    """
964 965 966 967
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    origin_num_embeddings = origin_size[0]
    embedding = paddle.nn.Embedding(
        per_part_embeddings,
        origin_size[1],
        padding_idx=per_part_embeddings - 1,
        sparse=False,
        weight_attr=param_attr,
        name=name)

    origin_input_shape = x.shape
    if len(origin_input_shape) == 2:
        x = paddle.unsqueeze(x, axis=-1)
    else:
        assert origin_input_shape[-1] == 1, (
            "The last dimension size of x must be 1.")
    x_shard = paddle.shard_index(x, origin_num_embeddings, num_partitions,
                                 inner_rank, per_part_embeddings - 1)
    if len(origin_input_shape) == 2:
        x_shard = paddle.squeeze(x_shard, axis=-1)
    emb_out = embedding(x_shard)
    startup_block = paddle.static.default_startup_program().global_block()
    main_block = paddle.static.default_main_program().global_block()
    startup_block.vars[embedding.weight.name].is_distributed = True
    main_block.vars[embedding.weight.name].is_distributed = True
L
lilong12 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    out = main_block.create_var(
        shape=emb_out.shape,
        dtype=emb_out.dtype,
        type=emb_out.type,
        lod_level=emb_out.lod_level,
        persistable=False,
        is_data=False,
        need_check_feed=emb_out.desc.need_check_feed())
    main_block.append_op(
        type='c_allreduce_sum',
        inputs={'X': emb_out},
        outputs={'Out': out},
        attrs={
1005
            'ring_id': ring_id,
L
lilong12 已提交
1006 1007 1008 1009
            'use_calc_stream': True,
            'use_model_parallel': True
        })
    return out
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032


def split(x,
          size,
          operation,
          axis=0,
          num_partitions=1,
          gather_out=True,
          weight_attr=None,
          bias_attr=None,
          name=None):
    """

    Split the weight of the specified operation into multiple devices
    and do the computation in parallel.

    Now the following three cases are supported.

    Case 1: Parallel Embedding
        The weight of the embedding operation is a NxM matrix with N rows and M columns.
        With parallel embedding, the weight is split into num_partitions partitions, each
        of which is a matrix with (N/num_partitions + 1) rows and M column where the last
        row as the padding idx.
K
kuizhiqing 已提交
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        Suppose we split the NxM weight into two partitons on device_0 and device_1
        respectively. Then, one each device, the final weight has (N/2 + 1) rows with the
        index range from 0 to N/2. On device_0, all values in the input within [0, N/2 -1]
        keep unchanged and all other values are changed to N/2 which is the padding index and
        are mapped to all zeros after embedding. In the same way, on device_1, the value V in the
        input within [N/2, N-1] will be changed to (V - N/2), and all other values are changed
        to N/2 and are mapped to all zeros after embedding. Finally, the results on the two
        devices are sum-reduced.

    Case 2: Row Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With row parallel linear, the weight is split into num_partitions partitions, each
        of which is a matrix with N/num_partitions rows and M column.

    Case 3: Column Parallel Linear
        The weight of the linear operation is a NxM matrix with N rows and M columns.
        With column parallel linear, the weight is split into num_paratitions partitions, each
        of which is a matrix with N rows and M/num_partitions column.

    Args:
        x (Tensor): Input tensor. It's data type should be float16, float32, float64, int32 or int64.
        size (list|tuple): A list or tuple with two elements indicating the shape of the weight.
        operation (str): The name of the operation. The supported operations are 'linear' and 'embedding'.
        axis (int, Optional): Indicate along which axis to split the weight. Default: 0.
        num_partitions (int, Optional): How many parts the weight is partitioned. Default: 1.
        gather_out (bool, Optional): Whether to gather the output after computation. By default, the output
            on each partitions will be gathered after computation. Default: True.
        weight_attr (ParamAttr, Optional): The parameter attribute for the learnable
            weights(Parameter) of the specified operation. Default: None.
        bias_attr (ParamAttr, Optional): The parameter attribute for the bias
            of the specified operation. Default: None.
        name (str, Optional): The default value is None. Normally there is no need for user to set this
            property. Default: None. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.distributed import init_parallel_env

1077 1078
            # required: gpu

1079 1080 1081
            paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id)
            init_parallel_env()
            data = paddle.randint(0, 8, shape=[10,4])
1082
            emb_out = paddle.distributed.split(
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
                data,
                (8, 8),
                operation="embedding",
                num_partitions=2)
    """
    assert isinstance(size, (list, tuple)), (
        "The type of size for "
        "paddle.distributed.split must be list or tuple.")
    assert len(size) == 2, ("Number of elements in size of "
                            "paddle.distributed.split must be two.")
    assert isinstance(operation, str), ("The type of operation for "
                                        "paddle.distributed.split must be str.")
    supported_operations = [
        'linear',
        'embedding',
    ]
    assert operation in supported_operations, (
        "The operation for "
        "paddle.distributed.split must be one of {}.".format(
            supported_operations))
    if in_dygraph_mode():
L
lilong12 已提交
1104 1105 1106 1107
        raise ValueError(
            "paddle.distributed.split cannot be used in dynamic "
            "graph mode, plese use ParallelEmbedding, ParallelRowLinear, "
            "ParallelColumnLinear instead.")
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    else:
        assert fleet._role_maker, ("To use paddle.distributed.split, "
                                   "you must call fleet.init() firstly.")
        rank = fleet.worker_index()
        nranks = fleet.worker_num()

    # rank within a model parallel group
    inner_rank = rank % num_partitions

    if operation == "embedding":
        assert axis == 0, ("We only support to split the weight of embedding "
                           "along the first axis now.")
        per_part_size = (size[0] + num_partitions - 1) // num_partitions
        last_part_size = size[0] - per_part_size * (num_partitions - 1)
        if inner_rank == num_partitions - 1: per_part_size = last_part_size
        per_part_size += 1  # make the last row as the padding index

L
lilong12 已提交
1125 1126 1127 1128 1129 1130 1131 1132
        emb_out = _parallel_embedding(
            x,
            per_part_size,
            size,
            weight_attr,
            inner_rank,
            num_partitions,
            name,
1133
            group=None)
1134 1135
        return emb_out
    else:
L
lilong12 已提交
1136
        should_split = False
1137 1138 1139 1140 1141 1142 1143
        if axis == 0:
            assert size[0] % num_partitions == 0, (
                "Number of rows of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[0],
                                                           num_partitions))
            per_part_size = size[0] // num_partitions
            linear_size = (per_part_size, size[1])
L
lilong12 已提交
1144
            if x.shape[-1] == size[0]: should_split = True
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

        elif axis == 1:
            assert size[1] % num_partitions == 0, (
                "Number of column of the weight for linear ({}) must be"
                " divisible by num_partitions ({})".format(size[1],
                                                           num_partitions))
            per_part_size = size[1] // num_partitions
            linear_size = (size[0], per_part_size)
        else:
            raise ValueError("The value of axis must be 0 or 1, but the value "
                             "given is {}.".format(axis))

        linear_out = _parallel_linear(
            x,
            linear_size[0],
            linear_size[1],
            axis,
            weight_attr,
            bias_attr,
            gather_out,
            inner_rank,
L
lilong12 已提交
1166 1167 1168
            num_partitions,
            should_split,
            name=name,
1169
            group=None)
1170
        return linear_out
L
lilong12 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180


def send(tensor, dst=0, group=None, use_calc_stream=True):
    """
    Send a tensor to the receiver.

    Args:
        tensor (Tensor): The Tensor to send. Its data type
            should be float16, float32, float64, int32 or int64.
        dst (int): The destination rank id.
L
lilong12 已提交
1181 1182
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
L
lilong12 已提交
1183 1184 1185 1186 1187
    Returns:
        None.

    Examples:
        .. code-block:: python
L
lilong12 已提交
1188
            # required: distributed
L
lilong12 已提交
1189
            import paddle
L
lilong12 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    op_type = 'send_v2'
    if in_dygraph_mode():
        return core.ops.send_v2(tensor, 'use_calc_stream', use_calc_stream,
                                'ring_id', ring_id, 'peer', dst)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'send')

    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': dst,
            'use_calc_stream': use_calc_stream,
        })


def recv(tensor, src=0, group=None, use_calc_stream=True):
    """
    Receive a tensor to the sender.

    Args:
        tensor (Tensor): The Tensor to receive. Its data type
            should be float16, float32, float64, int32 or int64.
        src (int): The source rank id.
L
lilong12 已提交
1231 1232
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Whether to use calculate stream or communication stream. Default: True.
L
lilong12 已提交
1233 1234 1235 1236 1237
    Returns:
        None.

    Examples:
        .. code-block:: python
L
lilong12 已提交
1238
            # required: distributed
L
lilong12 已提交
1239
            import paddle
L
lilong12 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            if paddle.distributed.ParallelEnv().rank == 0:
                data = paddle.to_tensor([7, 8, 9])
                paddle.distributed.send(data, dst=1)
            else:
                data = paddle.to_tensor([1,2,3])
                paddle.distributed.recv(data, src=0)
            out = data.numpy()
L
lilong12 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    """
    if group is not None and not group.is_member():
        return
    ring_id = 0 if group is None else group.id

    op_type = 'recv_v2'
    if in_dygraph_mode():
        return core.ops.recv_v2(tensor, 'use_calc_stream', use_calc_stream,
                                'ring_id', ring_id, 'peer', src, 'dtype',
                                tensor.dtype, 'out_shape', tensor.shape)
    check_variable_and_dtype(
        tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv')
    helper = LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': use_calc_stream,
        })