slice_op_npu.cc 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/slice_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

28
void UpdateAttr(const framework::DDim& in_dims, const std::vector<int> axes,
29 30 31 32 33 34
                const std::vector<int> starts, const std::vector<int> ends,
                std::vector<int>* offsets, std::vector<int>* size) {
  int cnt = 0;
  for (int i = 0; i < in_dims.size(); ++i) {
    int start = 0;
    int end = in_dims[i];
35 36 37
    // NOTE(zhiqiu): Becareful that cnt may > axes.size() and result in
    // overflow.
    int axis = cnt < static_cast<int>(axes.size()) ? axes[cnt] : -1;
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    if (axis == i) {
      start = starts[cnt];
      if (start < 0) {
        start = (start + in_dims[i]);
      }
      start = std::max(start, static_cast<int>(0));
      end = ends[cnt];
      if (end < 0) {
        end = (end + in_dims[i]);
      }
      end = std::min(end, static_cast<int>(in_dims[i]));
      cnt++;
    }

    (*offsets)[i] = start;
    (*size)[i] = end - start;
  }
}

template <typename DeviceContext, typename T>
class SliceNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* out = ctx.Output<Tensor>("Out");

64 65 66 67 68 69 70 71 72 73
    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    std::vector<int> axes(axes_int.begin(), axes_int.end());
    std::vector<int> starts(starts_int.begin(), starts_int.end());
    std::vector<int> ends(ends_int.begin(), ends_int.end());

    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");
    auto infer_flags = ctx.Attr<std::vector<int>>("infer_flags");

74
    const auto& in_dims = input->dims();
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    // Get the accurate attribute value of starts and ends
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int>(ends_tensor_list);
    }

    PADDLE_ENFORCE_EQ(
        starts.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of starts must be equal to the size of axes."));
    PADDLE_ENFORCE_EQ(
        ends.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of ends must be equal to the size of axes."));

    if (ctx.HasInput("StartsTensor") || ctx.HasInput("EndsTensor") ||
        starts_tensor_list.size() > 0 || ends_tensor_list.size() > 0) {
      // Infer output dims
      auto out_dims = out->dims();
      auto slice_dims = out_dims;
      for (size_t i = 0; i < axes.size(); ++i) {
        // when start == -1 && end == start+1
        if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
          auto ret =
              std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
          if (ret != decrease_axis.end()) {
            ends[i] = in_dims[axes[i]];
          }
        }
      }

      CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
      slice_dims =
          GetSliceDims<int>(in_dims, axes, starts, ends, nullptr, nullptr);
      out_dims = GetDecreasedDims(slice_dims, decrease_axis);

      out->Resize(out_dims);
    }

124 125 126 127 128 129 130
    out->mutable_data<T>(ctx.GetPlace());

    std::vector<int> offsets(in_dims.size());
    std::vector<int> size(in_dims.size());

    UpdateAttr(in_dims, axes, starts, ends, &offsets, &size);

L
Leo Chen 已提交
131 132
    const auto& runner = NpuOpRunner("SliceD", {*input}, {*out},
                                     {{"offsets", offsets}, {"size", size}});
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class SliceGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dinput = ctx.Output<Tensor>(framework::GradVarName("Input"));

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    std::vector<int> axes(axes_int.begin(), axes_int.end());
    std::vector<int> starts(starts_int.begin(), starts_int.end());
    std::vector<int> ends(ends_int.begin(), ends_int.end());

    // Get the accurate attribute value of starts and ends
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int>(ends_tensor_list);
    }

171
    const auto& in_dims = input->dims();
172 173 174 175 176 177 178 179 180 181 182 183
    int rank = in_dims.size();

    std::vector<int> offsets(rank);
    std::vector<int> size(rank);
    UpdateAttr(in_dims, axes, starts, ends, &offsets, &size);

    std::vector<std::vector<int64_t>> paddings(rank, std::vector<int64_t>(2));
    for (int i = 0; i < rank; ++i) {
      paddings[i][0] = static_cast<int64_t>(offsets[i]);
      paddings[i][1] = static_cast<int64_t>(in_dims[i] - size[i] - offsets[i]);
    }

A
Aganlengzi 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    Tensor tmp_dout;
    tmp_dout.ShareDataWith(*dout);
    auto out_dims = dout->dims();
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");
    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        out_dims = framework::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
        std::vector<int> origin_out_shape(out_dims.size() + decrease_size, -1);
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }
        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = framework::make_ddim(origin_out_shape);
      }
      tmp_dout.Resize(out_dims);
    }

209 210 211 212
    dinput->mutable_data<T>(ctx.GetPlace());
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
L
Leo Chen 已提交
213
    const auto& runner =
A
Aganlengzi 已提交
214
        NpuOpRunner("PadD", {tmp_dout}, {*dinput}, {{"paddings", paddings}});
215 216 217 218 219 220 221 222 223 224 225
    runner.Run(stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    slice, ops::SliceNPUKernel<paddle::platform::NPUDeviceContext, float>,
226
    ops::SliceNPUKernel<paddle::platform::NPUDeviceContext, int>,
227 228 229 230 231 232
    ops::SliceNPUKernel<paddle::platform::NPUDeviceContext,
                        paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    slice_grad,
    ops::SliceGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
233
    ops::SliceGradNPUKernel<paddle::platform::NPUDeviceContext, int>,
234 235
    ops::SliceGradNPUKernel<paddle::platform::NPUDeviceContext,
                            paddle::platform::float16>);