batch_norm_op.cu.cc 12.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/batch_norm_op.h"
Q
Qiao Longfei 已提交
16
#include <cfloat>
S
Siddharth Goyal 已提交
17
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
20
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
26
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
27 28
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
29
template <typename T>
K
update  
Kexin Zhao 已提交
30
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
31

Q
QI JUN 已提交
32 33
void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout,
                  int *N, int *C, int *H, int *W, int *D) {
Q
Qiao Longfei 已提交
34
  *N = dims[0];
35 36 37 38 39 40
  if (dims.size() == 2) {
    *C = dims[1];
    *H = 1;
    *W = 1;
    *D = 1;
  } else {
Q
QI JUN 已提交
41 42
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
    *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
43
    *W = dims.size() > 3
Q
QI JUN 已提交
44
             ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2])
45 46
             : 1;
    *D = dims.size() > 4
Q
QI JUN 已提交
47
             ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3])
48 49
             : 1;
  }
Q
Qiao Longfei 已提交
50 51 52
}

template <typename T>
Q
QI JUN 已提交
53 54
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
55 56 57
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
58
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
59 60 61
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
62 63 64
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
65 66 67 68 69

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
70 71
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
72
    int N, C, H, W, D;
Q
QI JUN 已提交
73
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
74

75 76 77
    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

Q
Qiao Longfei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

99
    VLOG(3) << "Setting descriptors.";
Q
Qiao Longfei 已提交
100 101
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
102
    if (data_layout == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
103 104 105 106 107 108 109 110 111
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
112
    // Note: PERSISTENT not implemented for inference
Q
Qiao Longfei 已提交
113
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
K
Kexin Zhao 已提交
114
        bn_param_desc_, data_desc_, is_test ? CUDNN_BATCHNORM_SPATIAL : mode_));
Q
Qiao Longfei 已提交
115 116 117 118

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

Q
QI JUN 已提交
119
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
120

Q
QI JUN 已提交
121
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    // Now, depending on whether we are running test or not, we have two paths.
    if (is_test) {
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
140 141 142 143
          bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
          bias->template data<BatchNormParamType<T>>(),
          est_mean->template data<BatchNormParamType<T>>(),
          est_var->template data<BatchNormParamType<T>>(), epsilon));
Q
Qiao Longfei 已提交
144 145 146 147
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
D
Dang Qingqing 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
      if ((N * H * W * D) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
        framework::TensorCopySync(*x, ctx.GetPlace(), y);
      } else {
        double this_factor = 1. - momentum;

        CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
            handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
            data_desc_, x->template data<T>(), data_desc_,
            y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), this_factor,
            mean_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            variance_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
                         ctx.GetPlace()),
            saved_variance->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace())));
      }
Q
Qiao Longfei 已提交
185 186 187 188 189 190 191 192 193 194
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

template <typename T>
Q
QI JUN 已提交
195
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
196 197 198 199
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
200
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
201
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
202 203 204
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
205 206 207 208 209 210
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

211 212
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
213
    int N, C, H, W, D;
Q
QI JUN 已提交
214
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if ((N * H * W * D) == 1) {
      framework::TensorCopySync(*d_y, ctx.GetPlace(), d_x);
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
      return;
    }

Q
Qiao Longfei 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

Z
zchen0211 已提交
258 259
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
260
    if (data_layout == DataLayout::kNCHW) {
Z
zchen0211 已提交
261 262 263 264 265 266
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
267 268 269 270 271 272 273 274 275 276 277 278
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
    const void *saved_mean_data = saved_mean->template data<T>();
    const void *saved_var_data = saved_var->template data<T>();

    CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
Q
QI JUN 已提交
279 280 281 282
        dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
        data_desc_, d_y->template data<T>(), data_desc_,
Q
Qiao Longfei 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
        scale->template data<T>(),
        d_scale->template mutable_data<T>(ctx.GetPlace()),
        d_bias->template mutable_data<T>(ctx.GetPlace()), epsilon,
        saved_mean_data, saved_var_data));

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
300
namespace plat = paddle::platform;
Q
QI JUN 已提交
301
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
302
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
303
    ops::BatchNormKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
304
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
305
REGISTER_OP_CUDA_KERNEL(
D
dzhwinter 已提交
306 307
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, double>);