predictor_test.go 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package paddle

import (
	"io/ioutil"
	"os"
20
	"runtime"
21
	"testing"
22
	"time"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
)

func TestNewPredictor(t *testing.T) {
	t.Logf("Version:\n%+v", Version())
	config := NewConfig()
	config.SetModel("./mobilenetv1/inference.pdmodel", "./mobilenetv1/inference.pdiparams")
	config.EnableUseGpu(100, 0)
	predictor := NewPredictor(config)
	inNames := predictor.GetInputNames()
	t.Logf("InputNames:%+v", inNames)
	outNames := predictor.GetOutputNames()
	t.Logf("OutputNames:%+v", outNames)

	inHandle := predictor.GetInputHandle(inNames[0])
	inHandle.Reshape([]int32{1, 3, 224, 224})
	t.Logf("inHandle name:%+v, shape:%+v", inHandle.Name(), inHandle.Shape())

	var lod [][]uint
	lod = append(lod, []uint{0, 1, 2})
	lod = append(lod, []uint{1, 2, 3, 4})
	inHandle.SetLod(lod)
	t.Logf("inHandle Lod:%+v", inHandle.Lod())
	data := make([]float32, numElements([]int32{1, 3, 224, 224}))
	for i := 0; i < int(numElements([]int32{1, 3, 224, 224})); i++ {
		data[i] = float32(i%255) * 0.1
	}
	inHandle.CopyFromCpu(data)
	t.Logf("inHandle Type:%+v", inHandle.Type())

	predictor.Run()

	outHandle := predictor.GetOutputHandle(outNames[0])
	t.Logf("outHandle name:%+v", outHandle.Name())

	outShape := outHandle.Shape()
	t.Logf("outHandle Shape:%+v", outShape)
	outData := make([]float32, numElements(outShape))
	outHandle.CopyToCpu(outData)
	t.Log(outData)

	cloned := predictor.Clone()
	t.Logf("InputNum:%+v", cloned.GetInputNum())
	t.Logf("OutputNum:%+v", cloned.GetInputNum())
	cloned.ClearIntermediateTensor()
}

func TestFromBuffer(t *testing.T) {
	modelFile, err := os.Open("./mobilenetv1/inference.pdmodel")
	if err != nil {
		t.Fatal(err)
	}
	paramsFile, err := os.Open("./mobilenetv1/inference.pdiparams")
	if err != nil {
		t.Fatal(err)
	}
	defer modelFile.Close()
	defer paramsFile.Close()

	model, err := ioutil.ReadAll(modelFile)
	if err != nil {
		t.Fatal(err)
	}
	params, err := ioutil.ReadAll(paramsFile)
	if err != nil {
		t.Fatal(err)
	}
	config := NewConfig()
	config.SetModelBuffer(string(model), string(params))

	predictor := NewPredictor(config)
	inNames := predictor.GetInputNames()
	outNames := predictor.GetOutputNames()
	inHandle := predictor.GetInputHandle(inNames[0])
	inHandle.Reshape([]int32{1, 3, 224, 224})
	data := make([]float32, numElements([]int32{1, 3, 224, 224}))
	for i := 0; i < int(numElements([]int32{1, 3, 224, 224})); i++ {
		data[i] = float32(i%255) * 0.1
	}
	inHandle.CopyFromCpu(data)
	predictor.Run()
	outHandle := predictor.GetOutputHandle(outNames[0])
	outShape := outHandle.Shape()
	t.Logf("outHandle Shape:%+v", outShape)
	outData := make([]float32, numElements(outShape))
	outHandle.CopyToCpu(outData)
	t.Log(outData)
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
func TestCollectShapeInfo(t *testing.T) {
	config := NewConfig()
	config.SetModel("./mobilenetv1/inference.pdmodel", "./mobilenetv1/inference.pdiparams")
	config.CollectShapeRangeInfo("shape_range_info.pbtxt")
	config.EnableUseGpu(100, 0)
	t.Logf("ShapeRangeInfoCollected:%+v", config.ShapeRangeInfoCollected())
	t.Logf("ShapeRangeInfoPath:%+v", config.ShapeRangeInfoPath())
	predictor := NewPredictor(config)
	inNames := predictor.GetInputNames()
	outNames := predictor.GetOutputNames()
	inHandle := predictor.GetInputHandle(inNames[0])
	inHandle.Reshape([]int32{1, 3, 224, 224})

	data := make([]float32, numElements([]int32{1, 3, 224, 224}))
	for i := 0; i < int(numElements([]int32{1, 3, 224, 224})); i++ {
		data[i] = float32(i%255) * 0.1
	}
	inHandle.CopyFromCpu(data)

	predictor.Run()

	outHandle := predictor.GetOutputHandle(outNames[0])
	outShape := outHandle.Shape()
	outData := make([]float32, numElements(outShape))
	outHandle.CopyToCpu(outData)
	// Go is a GC language, so we must wait for gc to get shape_range_info.pbtxt
	predictor = nil
	runtime.GC()
	time.Sleep(2 * time.Second)

	trt_config := NewConfig()
	trt_config.SetModel("./mobilenetv1/inference.pdmodel", "./mobilenetv1/inference.pdiparams")
	trt_config.EnableUseGpu(100, 0)
	trt_config.EnableTensorRtEngine(102400, 4, 3, PrecisionFloat32, false, false)
	trt_config.EnableTunedTensorRtDynamicShape("shape_range_info.pbtxt", true)
	trt_predictor := NewPredictor(trt_config)
	trt_inNames := trt_predictor.GetInputNames()
	trt_inHandle := trt_predictor.GetInputHandle(trt_inNames[0])
	trt_inHandle.Reshape([]int32{1, 3, 224, 224})

	trt_inHandle.CopyFromCpu(data)

	trt_predictor.Run()

}

157 158 159 160 161 162 163
func numElements(shape []int32) int32 {
	n := int32(1)
	for _, v := range shape {
		n *= v
	}
	return n
}