sequence_concat_op.h 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yancey1989 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"
Y
Yancey1989 已提交
19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename T>
28
LoD ConcatLoD(const std::vector<const T*> ins, const size_t level) {
Y
Yancey1989 已提交
29
  auto out_lod = ins[0]->lod();
30
  auto numLevels = ins[0]->NumLevels();
Y
Yancey1989 已提交
31
  const size_t n = ins.size();
32 33 34 35 36 37
  const size_t level_idx = ins[0]->NumLevels() - 1 - level;
  for (size_t i = 1; i < n; ++i) {
    for (size_t j = 0; j < ins[i]->lod()[level_idx].size(); ++j) {
      out_lod[level_idx][j] += ins[i]->lod()[level_idx][j];
    }
  }
Y
update  
Yancey1989 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  for (size_t i = level_idx; i < numLevels - 1; ++i) {
    size_t lod_len = 1;
    for (size_t j = 0; j < n; ++j) {
      lod_len += ins[j]->lod()[i + 1].size() - 1;
    }
    out_lod[i + 1].clear();
    out_lod[i + 1].resize(lod_len);

    size_t idx = 1;
    for (size_t j = 0; j < ins[0]->lod()[i].size() - 1; ++j) {
      for (size_t k = 0; k < n; ++k) {
        for (size_t m = ins[k]->lod()[i][j]; m < ins[k]->lod()[i][j + 1]; ++m) {
          out_lod[i + 1][idx] = out_lod[i + 1][idx - 1] +
                                ins[k]->lod()[i + 1][m + 1] -
                                ins[k]->lod()[i + 1][m];
          idx++;
Y
Yancey1989 已提交
55 56 57 58
        }
      }
    }
  }
59

Y
Yancey1989 已提交
60 61 62
  return out_lod;
}

Q
QI JUN 已提交
63
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
64
class SequenceConcatOpKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
65 66 67 68 69 70 71
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    const size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
    const size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
    const size_t n = ins.size();
Y
Yancey1989 已提交
72 73 74

    for (size_t i = 1; i < n; ++i) {
      PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), ins[i]->NumLevels(),
Y
update  
Yancey1989 已提交
75
                        "The levels of all the input LoDTensors "
Y
Yancey1989 已提交
76 77
                        "should be the same.");
      PADDLE_ENFORCE_EQ(ins[0]->dims().size(), ins[i]->dims().size(),
Y
Yancey1989 已提交
78
                        "The dimension size of all the input LoDTensors "
Y
Yancey1989 已提交
79 80 81 82 83 84
                        "should be the same.");

      const size_t dims_size = ins[i]->dims().size();
      for (size_t j = 0; j < dims_size; ++j) {
        if (j == axis) continue;
        PADDLE_ENFORCE_EQ(ins[0]->dims()[j], ins[i]->dims()[j],
Y
Yancey1989 已提交
85 86 87 88
                          "Except for the dimension of the specified "
                          "axis along which all the inputs are concatenated, "
                          "dimensions of all the other axises of the input "
                          "LoDTensors should be the same.");
Y
Yancey1989 已提交
89 90
      }
    }
Y
Yancey1989 已提交
91 92 93
    PADDLE_ENFORCE_GT(ins[0]->NumLevels(), level,
                      "The levels of all the input LoDTensors "
                      "should be greater than the specify level");
Y
Yancey1989 已提交
94

Y
Yancey1989 已提交
95
    out->mutable_data<T>(ctx.GetPlace());
96 97 98 99
    auto out_lod = ins[0]->lod();
    if (axis == 0) {
      out_lod = ConcatLoD<LoDTensor>(ins, level);
    }
Y
Yancey1989 已提交
100 101
    out->set_lod(out_lod);

102 103
    const size_t level_idx = out_lod.size() - level - 1;
    auto out_lod_level = framework::ToAbsOffset(out_lod)[level_idx];
Y
Yancey1989 已提交
104
    for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
105 106
      Tensor out_t = out->Slice(static_cast<int>(out_lod_level[i]),
                                static_cast<int>(out_lod_level[i + 1]));
Y
Yancey1989 已提交
107 108
      auto out_stride = framework::stride(out_t.dims());
      size_t offset = 0;
Y
Yancey1989 已提交
109
      for (size_t j = 0; j < n; ++j) {
110
        auto in_lod_level = framework::ToAbsOffset(ins[j]->lod())[level_idx];
Y
Yancey1989 已提交
111
        auto in_stride = framework::stride(ins[j]->dims());
112 113
        Tensor in_t = ins[j]->Slice(static_cast<int>(in_lod_level[i]),
                                    static_cast<int>(in_lod_level[i + 1]));
Y
Yancey1989 已提交
114 115 116 117 118 119 120 121 122
        size_t axis_dim = in_t.dims()[axis];
        StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
                         in_t.dims(), out_stride, out_t.data<T>() + offset);
        offset += axis_dim * in_stride[axis];
      }
    }
  }
};

Q
QI JUN 已提交
123
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
124
class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    auto* out_grad =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto x_grads =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
    size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
    size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
    const size_t n = x_grads.size();

    // Set Grad(X) LoD as X
    for (size_t i = 0; i < n; i++) {
      x_grads[i]->set_lod(ins[i]->lod());
      x_grads[i]->mutable_data<T>(ctx.GetPlace());
    }
141 142 143 144 145 146
    auto out_lod = ins[0]->lod();
    if (axis == 0UL) {
      out_lod = ConcatLoD<LoDTensor>(ins, level);
    }
    const size_t level_idx = out_lod.size() - level - 1;
    auto out_lod_level = framework::ToAbsOffset(out_lod)[level_idx];
Y
Yancey1989 已提交
147

Y
Yancey1989 已提交
148
    for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Y
Yancey1989 已提交
149
      Tensor out_grad_t =
150 151
          out_grad->Slice(static_cast<int>(out_lod_level[i]),
                          static_cast<int>(out_lod_level[i + 1]));
Y
Yancey1989 已提交
152 153 154
      auto out_grad_stride = framework::stride(out_grad_t.dims());
      size_t offset = 0;

Y
Yancey1989 已提交
155
      for (size_t j = 0; j < n; ++j) {
156 157
        auto x_grad_lod_level =
            framework::ToAbsOffset(x_grads[j]->lod())[level_idx];
Y
Yancey1989 已提交
158 159
        auto x_grad_stride = framework::stride(x_grads[j]->dims());
        Tensor x_grad_t =
160 161
            x_grads[j]->Slice(static_cast<int>(x_grad_lod_level[i]),
                              static_cast<int>(x_grad_lod_level[i + 1]));
Y
Yancey1989 已提交
162 163 164 165 166 167 168 169 170 171 172 173
        size_t axis_dim = x_grad_t.dims()[axis];
        StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>() + offset,
                         out_grad_stride, out_grad_t.dims(), x_grad_stride,
                         x_grad_t.data<T>());
        offset += axis_dim * out_grad_stride[axis];
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle