generate_proposals_op.cu 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include <paddle/fluid/memory/allocation/allocator.h>
16 17 18 19
#include <stdio.h>
#include <string>
#include <vector>
#include "cub/cub.cuh"
20
#include "paddle/fluid/framework/mixed_vector.h"
21 22 23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
25
#include "paddle/fluid/platform/for_range.h"
26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

namespace {

#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))

int const kThreadsPerBlock = sizeof(uint64_t) * 8;

39 40 41 42 43 44 45 46
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);

struct RangeInitFunctor {
  int start_;
  int delta_;
  int *out_;
  __device__ void operator()(size_t i) { out_[i] = start_ + i * delta_; }
};
47 48

template <typename T>
49 50 51 52
static void SortDescending(const platform::CUDADeviceContext &ctx,
                           const Tensor &value, Tensor *value_out,
                           Tensor *index_out) {
  int num = static_cast<int>(value.numel());
53 54
  Tensor index_in_t;
  int *idx_in = index_in_t.mutable_data<int>({num}, ctx.GetPlace());
55 56 57
  platform::ForRange<platform::CUDADeviceContext> for_range(ctx, num);
  for_range(RangeInitFunctor{0, 1, idx_in});

58 59 60 61 62 63 64 65
  int *idx_out = index_out->mutable_data<int>({num}, ctx.GetPlace());

  const T *keys_in = value.data<T>();
  T *keys_out = value_out->mutable_data<T>({num}, ctx.GetPlace());

  // Determine temporary device storage requirements
  size_t temp_storage_bytes = 0;
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
66
      nullptr, temp_storage_bytes, keys_in, keys_out, idx_in, idx_out, num);
67
  // Allocate temporary storage
68
  auto place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
69
  auto d_temp_storage = memory::Alloc(place, temp_storage_bytes);
70 71 72

  // Run sorting operation
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
73 74
      d_temp_storage->ptr(), temp_storage_bytes, keys_in, keys_out, idx_in,
      idx_out, num);
75 76 77
}

template <typename T>
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
struct BoxDecodeAndClipFunctor {
  const T *anchor;
  const T *deltas;
  const T *var;
  const int *index;
  const T *im_info;

  T *proposals;

  BoxDecodeAndClipFunctor(const T *anchor, const T *deltas, const T *var,
                          const int *index, const T *im_info, T *proposals)
      : anchor(anchor),
        deltas(deltas),
        var(var),
        index(index),
        im_info(im_info),
        proposals(proposals) {}

  T bbox_clip_default{static_cast<T>(kBBoxClipDefault)};

  __device__ void operator()(size_t i) {
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    int k = index[i] * 4;
    T axmin = anchor[k];
    T aymin = anchor[k + 1];
    T axmax = anchor[k + 2];
    T aymax = anchor[k + 3];

    T w = axmax - axmin + 1.0;
    T h = aymax - aymin + 1.0;
    T cx = axmin + 0.5 * w;
    T cy = aymin + 0.5 * h;

    T dxmin = deltas[k];
    T dymin = deltas[k + 1];
    T dxmax = deltas[k + 2];
    T dymax = deltas[k + 3];

115
    T d_cx, d_cy, d_w, d_h;
116 117 118
    if (var) {
      d_cx = cx + dxmin * w * var[k];
      d_cy = cy + dymin * h * var[k + 1];
119 120
      d_w = exp(Min(dxmax * var[k + 2], bbox_clip_default)) * w;
      d_h = exp(Min(dymax * var[k + 3], bbox_clip_default)) * h;
121 122 123
    } else {
      d_cx = cx + dxmin * w;
      d_cy = cy + dymin * h;
124 125
      d_w = exp(Min(dxmax, bbox_clip_default)) * w;
      d_h = exp(Min(dymax, bbox_clip_default)) * h;
126 127 128 129 130 131 132
    }

    T oxmin = d_cx - d_w * 0.5;
    T oymin = d_cy - d_h * 0.5;
    T oxmax = d_cx + d_w * 0.5 - 1.;
    T oymax = d_cy + d_h * 0.5 - 1.;

133 134 135 136
    proposals[i * 4] = Max(Min(oxmin, im_info[1] - 1.), 0.);
    proposals[i * 4 + 1] = Max(Min(oymin, im_info[0] - 1.), 0.);
    proposals[i * 4 + 2] = Max(Min(oxmax, im_info[1] - 1.), 0.);
    proposals[i * 4 + 3] = Max(Min(oymax, im_info[0] - 1.), 0.);
137
  }
138 139 140 141 142

  __device__ __forceinline__ T Min(T a, T b) const { return a > b ? b : a; }

  __device__ __forceinline__ T Max(T a, T b) const { return a > b ? a : b; }
};
143 144

template <typename T, int BlockSize>
145 146 147
static __global__ void FilterBBoxes(const T *bboxes, const T *im_info,
                                    const T min_size, const int num,
                                    int *keep_num, int *keep) {
148 149 150 151 152 153 154
  T im_h = im_info[0];
  T im_w = im_info[1];
  T im_scale = im_info[2];

  int cnt = 0;
  __shared__ int keep_index[BlockSize];

155
  CUDA_KERNEL_LOOP(i, num) {
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    keep_index[threadIdx.x] = -1;
    __syncthreads();

    int k = i * 4;
    T xmin = bboxes[k];
    T ymin = bboxes[k + 1];
    T xmax = bboxes[k + 2];
    T ymax = bboxes[k + 3];

    T w = xmax - xmin + 1.0;
    T h = ymax - ymin + 1.0;
    T cx = xmin + w / 2.;
    T cy = ymin + h / 2.;

    T w_s = (xmax - xmin) / im_scale + 1.;
    T h_s = (ymax - ymin) / im_scale + 1.;

    if (w_s >= min_size && h_s >= min_size && cx <= im_w && cy <= im_h) {
      keep_index[threadIdx.x] = i;
    }
    __syncthreads();
    if (threadIdx.x == 0) {
      int size = (num - i) < BlockSize ? num - i : BlockSize;
      for (int j = 0; j < size; ++j) {
        if (keep_index[j] > -1) {
          keep[cnt++] = keep_index[j];
        }
      }
    }
    __syncthreads();
  }
  if (threadIdx.x == 0) {
    keep_num[0] = cnt;
  }
}

192
static __device__ inline float IoU(const float *a, const float *b) {
193 194 195 196 197 198 199 200 201
  float left = max(a[0], b[0]), right = min(a[2], b[2]);
  float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
  float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
  float inter_s = width * height;
  float s_a = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
  float s_b = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
  return inter_s / (s_a + s_b - inter_s);
}

202 203 204
static __global__ void NMSKernel(const int n_boxes,
                                 const float nms_overlap_thresh,
                                 const float *dev_boxes, uint64_t *dev_mask) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  const int row_start = blockIdx.y;
  const int col_start = blockIdx.x;

  const int row_size =
      min(n_boxes - row_start * kThreadsPerBlock, kThreadsPerBlock);
  const int col_size =
      min(n_boxes - col_start * kThreadsPerBlock, kThreadsPerBlock);

  __shared__ float block_boxes[kThreadsPerBlock * 4];
  if (threadIdx.x < col_size) {
    block_boxes[threadIdx.x * 4 + 0] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 0];
    block_boxes[threadIdx.x * 4 + 1] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 1];
    block_boxes[threadIdx.x * 4 + 2] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 2];
    block_boxes[threadIdx.x * 4 + 3] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 3];
  }
  __syncthreads();

  if (threadIdx.x < row_size) {
    const int cur_box_idx = kThreadsPerBlock * row_start + threadIdx.x;
    const float *cur_box = dev_boxes + cur_box_idx * 4;
    int i = 0;
    uint64_t t = 0;
    int start = 0;
    if (row_start == col_start) {
      start = threadIdx.x + 1;
    }
    for (i = start; i < col_size; i++) {
      if (IoU(cur_box, block_boxes + i * 4) > nms_overlap_thresh) {
        t |= 1ULL << i;
      }
    }
    const int col_blocks = DIVUP(n_boxes, kThreadsPerBlock);
    dev_mask[cur_box_idx * col_blocks + col_start] = t;
  }
}

template <typename T>
246 247 248
static void NMS(const platform::CUDADeviceContext &ctx, const Tensor &proposals,
                const Tensor &sorted_indices, const T nms_threshold,
                Tensor *keep_out) {
249 250 251 252 253 254 255
  int boxes_num = proposals.dims()[0];
  const int col_blocks = DIVUP(boxes_num, kThreadsPerBlock);
  dim3 blocks(DIVUP(boxes_num, kThreadsPerBlock),
              DIVUP(boxes_num, kThreadsPerBlock));
  dim3 threads(kThreadsPerBlock);

  const T *boxes = proposals.data<T>();
256
  auto place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
257
  framework::Vector<uint64_t> mask(boxes_num * col_blocks);
258 259 260
  NMSKernel<<<blocks, threads>>>(boxes_num, nms_threshold, boxes,
                                 mask.CUDAMutableData(BOOST_GET_CONST(
                                     platform::CUDAPlace, ctx.GetPlace())));
261 262 263 264 265 266 267 268 269 270 271 272 273

  std::vector<uint64_t> remv(col_blocks);
  memset(&remv[0], 0, sizeof(uint64_t) * col_blocks);

  std::vector<int> keep_vec;
  int num_to_keep = 0;
  for (int i = 0; i < boxes_num; i++) {
    int nblock = i / kThreadsPerBlock;
    int inblock = i % kThreadsPerBlock;

    if (!(remv[nblock] & (1ULL << inblock))) {
      ++num_to_keep;
      keep_vec.push_back(i);
274
      uint64_t *p = &mask[0] + i * col_blocks;
275 276 277 278 279 280 281
      for (int j = nblock; j < col_blocks; j++) {
        remv[j] |= p[j];
      }
    }
  }
  int *keep = keep_out->mutable_data<int>({num_to_keep}, ctx.GetPlace());
  memory::Copy(place, keep, platform::CPUPlace(), keep_vec.data(),
282 283
               sizeof(int) * num_to_keep, ctx.stream());
  ctx.Wait();
284 285 286
}

template <typename T>
287
static std::pair<Tensor, Tensor> ProposalForOneImage(
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    const platform::CUDADeviceContext &ctx, const Tensor &im_info,
    const Tensor &anchors, const Tensor &variances,
    const Tensor &bbox_deltas,  // [M, 4]
    const Tensor &scores,       // [N, 1]
    int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
    float eta) {
  // 1. pre nms
  Tensor scores_sort, index_sort;
  SortDescending<T>(ctx, scores, &scores_sort, &index_sort);
  int num = scores.numel();
  int pre_nms_num = (pre_nms_top_n <= 0 || pre_nms_top_n > num) ? scores.numel()
                                                                : pre_nms_top_n;
  scores_sort.Resize({pre_nms_num, 1});
  index_sort.Resize({pre_nms_num, 1});

  // 2. box decode and clipping
  Tensor proposals;
  proposals.mutable_data<T>({pre_nms_num, 4}, ctx.GetPlace());
306 307 308 309 310 311 312

  {
    platform::ForRange<platform::CUDADeviceContext> for_range(ctx, pre_nms_num);
    for_range(BoxDecodeAndClipFunctor<T>{
        anchors.data<T>(), bbox_deltas.data<T>(), variances.data<T>(),
        index_sort.data<int>(), im_info.data<T>(), proposals.data<T>()});
  }
313 314 315 316 317 318

  // 3. filter
  Tensor keep_index, keep_num_t;
  keep_index.mutable_data<int>({pre_nms_num}, ctx.GetPlace());
  keep_num_t.mutable_data<int>({1}, ctx.GetPlace());
  min_size = std::max(min_size, 1.0f);
319
  auto stream = ctx.stream();
320 321 322 323
  FilterBBoxes<T, 512><<<1, 512, 0, stream>>>(
      proposals.data<T>(), im_info.data<T>(), min_size, pre_nms_num,
      keep_num_t.data<int>(), keep_index.data<int>());
  int keep_num;
324
  const auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
325
  memory::Copy(platform::CPUPlace(), &keep_num, gpu_place,
326 327
               keep_num_t.data<int>(), sizeof(int), ctx.stream());
  ctx.Wait();
328 329 330
  keep_index.Resize({keep_num});

  Tensor scores_filter, proposals_filter;
331 332 333 334 335 336 337 338 339
  // Handle the case when there is no keep index left
  if (keep_num == 0) {
    math::SetConstant<platform::CUDADeviceContext, T> set_zero;
    proposals_filter.mutable_data<T>({1, 4}, ctx.GetPlace());
    scores_filter.mutable_data<T>({1, 1}, ctx.GetPlace());
    set_zero(ctx, &proposals_filter, static_cast<T>(0));
    set_zero(ctx, &scores_filter, static_cast<T>(0));
    return std::make_pair(proposals_filter, scores_filter);
  }
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  proposals_filter.mutable_data<T>({keep_num, 4}, ctx.GetPlace());
  scores_filter.mutable_data<T>({keep_num, 1}, ctx.GetPlace());
  GPUGather<T>(ctx, proposals, keep_index, &proposals_filter);
  GPUGather<T>(ctx, scores_sort, keep_index, &scores_filter);

  if (nms_thresh <= 0) {
    return std::make_pair(proposals_filter, scores_filter);
  }

  // 4. nms
  Tensor keep_nms;
  NMS<T>(ctx, proposals_filter, keep_index, nms_thresh, &keep_nms);
  if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
    keep_nms.Resize({post_nms_top_n});
  }

  Tensor scores_nms, proposals_nms;
  proposals_nms.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
  scores_nms.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
  GPUGather<T>(ctx, proposals_filter, keep_nms, &proposals_nms);
  GPUGather<T>(ctx, scores_filter, keep_nms, &scores_nms);

  return std::make_pair(proposals_nms, scores_nms);
}
}  // namespace

template <typename DeviceContext, typename T>
class CUDAGenerateProposalsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_info = context.Input<Tensor>("ImInfo");
373 374 375 376
    auto anchors = GET_DATA_SAFELY(context.Input<Tensor>("Anchors"), "Input",
                                   "Anchors", "GenerateProposals");
    auto variances = GET_DATA_SAFELY(context.Input<Tensor>("Variances"),
                                     "Input", "Variances", "GenerateProposals");
377 378 379 380 381 382 383 384 385

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");
386 387 388 389 390
    PADDLE_ENFORCE_GE(eta, 1.,
                      platform::errors::InvalidArgument(
                          "Not support adaptive NMS. The attribute 'eta' "
                          "should not less than 1. But received eta=[%d]",
                          eta));
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

    auto &dev_ctx = context.template device_context<DeviceContext>();

    auto scores_dim = scores->dims();
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

    auto bbox_dim = bbox_deltas->dims();
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

    math::Transpose<DeviceContext, T, 4> trans;
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

416 417
    anchors.Resize({anchors.numel() / 4, 4});
    variances.Resize({variances.numel() / 4, 4});
418 419 420 421 422 423 424 425

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());

    T *rpn_rois_data = rpn_rois->data<T>();
    T *rpn_roi_probs_data = rpn_roi_probs->data<T>();

426
    auto place = BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace());
F
FDInSky 已提交
427
    auto cpu_place = platform::CPUPlace();
428 429 430

    int64_t num_proposals = 0;
    std::vector<size_t> offset(1, 0);
431
    std::vector<int> tmp_num;
F
FDInSky 已提交
432

433 434 435 436 437 438 439 440 441
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> box_score_pair =
442
          ProposalForOneImage<T>(dev_ctx, im_info_slice, anchors, variances,
443 444 445
                                 bbox_deltas_slice, scores_slice, pre_nms_top_n,
                                 post_nms_top_n, nms_thresh, min_size, eta);

446 447
      Tensor &proposals = box_score_pair.first;
      Tensor &scores = box_score_pair.second;
448 449

      memory::Copy(place, rpn_rois_data + num_proposals * 4, place,
450 451
                   proposals.data<T>(), sizeof(T) * proposals.numel(),
                   dev_ctx.stream());
452
      memory::Copy(place, rpn_roi_probs_data + num_proposals, place,
453 454 455
                   scores.data<T>(), sizeof(T) * scores.numel(),
                   dev_ctx.stream());
      dev_ctx.Wait();
456 457
      num_proposals += proposals.dims()[0];
      offset.emplace_back(num_proposals);
458
      tmp_num.push_back(proposals.dims()[0]);
F
FDInSky 已提交
459
    }
460 461 462 463 464 465 466
    if (context.HasOutput("RpnRoisNum")) {
      auto *rpn_rois_num = context.Output<Tensor>("RpnRoisNum");
      rpn_rois_num->mutable_data<int>({num}, context.GetPlace());
      int *num_data = rpn_rois_num->data<int>();
      memory::Copy(place, num_data, cpu_place, &tmp_num[0], sizeof(int) * num,
                   dev_ctx.stream());
      rpn_rois_num->Resize({num});
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    }
    framework::LoD lod;
    lod.emplace_back(offset);
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(generate_proposals,
                        ops::CUDAGenerateProposalsKernel<
                            paddle::platform::CUDADeviceContext, float>);