test_dist_train.py 3.5 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import numpy
from multiprocessing import Process
from threading import Thread
import os, sys
import time


class TestSendOp(unittest.TestCase):
    def test_send(self):
        # Run init_serv in a thread
        place = fluid.CPUPlace()
        # NOTE: python thread will not work here due to GIL.
        p = Process(target=self.init_serv, args=(place, ))
        p.daemon = True
        p.start()

T
update  
typhoonzero 已提交
36
        time.sleep(10)
Y
yi.wu 已提交
37
        with open("/tmp/paddle.%d.selected_port" % p.pid, "r") as fn:
T
typhoonzero 已提交
38 39 40 41 42 43
            selected_port = int(fn.readlines()[0])
        self.init_client(place, selected_port)

        self.run_local(place)
        self.assertTrue(numpy.allclose(self.local_out, self.dist_out))

T
update  
typhoonzero 已提交
44 45 46 47
        # FIXME(typhoonzero): find a way to gracefully shutdown the server.
        os.system("kill -9 %d" % p.pid)
        p.join()

T
typhoonzero 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    def init_serv(self, place):
        main = fluid.Program()

        with fluid.program_guard(main):
            serv = layers.ListenAndServ(
                "127.0.0.1:0", ["X"], optimizer_mode=False)
            with serv.do():
                x = layers.data(
                    shape=[32, 32],
                    dtype='float32',
                    name="X",
                    append_batch_size=False)
                fluid.initializer.Constant(value=1.0)(x, main.global_block())
                o = layers.scale(x=x, scale=10.0)
            main.global_block().create_var(
                name=o.name, psersistable=False, dtype=o.dtype, shape=o.shape)

        self.server_exe = fluid.Executor(place)
        self.server_exe.run(main)

    def init_client(self, place, port):
        main = fluid.Program()
        with fluid.program_guard(main):
            x = layers.data(
                shape=[32, 32],
                dtype='float32',
                name='X',
                append_batch_size=False)
            fluid.initializer.Constant(value=2.3)(x, main.global_block())
            get_var = main.global_block().create_var(
                name="scale_0.tmp_0",  # server side var
                dtype="float32",
                persistable=False,
                shape=[32, 32])
            o = layers.Send("127.0.0.1:%d" % port, [x], [get_var])
        exe = fluid.Executor(place)
        self.dist_out = exe.run(main, fetch_list=o)  # o is a list

    def run_local(self, place):
        main = fluid.Program()
        with fluid.program_guard(main):
            x = layers.data(
                shape=[32, 32],
                dtype='float32',
                name='X',
                append_batch_size=False)
            fluid.initializer.Constant(value=2.3)(x, main.global_block())
            o = layers.scale(x=x, scale=10.0)
        exe = fluid.Executor(place)
        self.local_out = exe.run(main, fetch_list=[o])


if __name__ == "__main__":
    unittest.main()