crf_decoding_op.h 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
Cao Ying 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
S
Siddharth Goyal 已提交
16
#include <limits>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/operators/jit/kernels.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/math_function.h"
C
Cao Ying 已提交
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using framework::LoDTensor;
using framework::LoD;
using framework::Tensor;

Q
QI JUN 已提交
29
template <typename DeviceContext, typename T>
C
Cao Ying 已提交
30 31 32 33 34 35 36 37
class CRFDecodingOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* emission_weights = ctx.Input<LoDTensor>("Emission");
    auto* transition_weights = ctx.Input<Tensor>("Transition");
    auto* label = ctx.Input<LoDTensor>("Label");
    auto* decoded_path = ctx.Output<Tensor>("ViterbiPath");

Q
Qiao Longfei 已提交
38
    int64_t* path = decoded_path->mutable_data<int64_t>(platform::CPUPlace());
Q
QI JUN 已提交
39 40
    math::SetConstant<DeviceContext, int64_t>()(
        ctx.template device_context<DeviceContext>(), decoded_path, 0);
C
Cao Ying 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    bool has_length = ctx.HasInput("Length");
    if (has_length) {
      auto* length = ctx.Input<Tensor>("Length");
      const size_t seq_num = length->numel();
      const int64_t* length_data = length->data<int64_t>();
      auto in_dims = emission_weights->dims();

      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      framework::Tensor emission_weights_tmp =
          ctx.AllocateTmpTensor<T, DeviceContext>(emission_weights->dims(),
                                                  dev_ctx);
      emission_weights_tmp.ShareDataWith(*emission_weights);
      emission_weights_tmp.Resize({in_dims[0] * in_dims[1], in_dims[2]});

      decoded_path->Resize({in_dims[0] * in_dims[1], 1});
      for (size_t i = 0; i < seq_num; ++i) {
        if (length_data[i] == 0) continue;
        int start_pos = i * in_dims[1];
        int end_pos = start_pos + static_cast<int>(length_data[i]);
        Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
        Decode(emission_weights_tmp.Slice(start_pos, end_pos),
               *transition_weights, &decoded_path_one_seq);
      }
      decoded_path->Resize({in_dims[0], in_dims[1]});
    } else {
      PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
                        "The Input(Emission) should be a sequence.");
      auto lod = emission_weights->lod();
      PADDLE_ENFORCE_GT(lod.size(), 0, "Input(Emission) must be a sequence.");
      const size_t level = 0;
      const size_t seq_num = lod[level].size() - 1;

      for (size_t i = 0; i < seq_num; ++i) {
        if (lod[level][i] == lod[level][i + 1]) continue;
        int start_pos = static_cast<int>(lod[level][i]);
        int end_pos = static_cast<int>(lod[level][i + 1]);
        Tensor decoded_path_one_seq = decoded_path->Slice(start_pos, end_pos);
        Decode(emission_weights->Slice(start_pos, end_pos), *transition_weights,
               &decoded_path_one_seq);
      }
    }
C
Cao Ying 已提交
83
    if (label) {
84 85 86 87
      if (!has_length) {
        PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
                          "The Input(Label) should be a sequence.");
      }
Q
Qiao Longfei 已提交
88
      const int64_t* label_value = label->data<int64_t>();
89 90
      size_t numel = label->numel();
      for (size_t i = 0; i < numel; ++i) {
C
Cao Ying 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
        path[i] = label_value[i] == path[i] ? 1 : 0;
      }
    }
  }

 private:
  void Decode(const Tensor& emission_weights, const Tensor& transition_weights,
              Tensor* decoded_path) const {
    auto emission_dims = emission_weights.dims();
    const size_t seq_len = emission_dims[0];
    const size_t tag_num = emission_dims[1];
    const T* x = emission_weights.data<T>();
    const T* w = transition_weights.data<T>();
Q
Qiao Longfei 已提交
104
    int64_t* path = decoded_path->data<int64_t>();
C
Cao Ying 已提交
105 106 107 108 109 110 111 112 113

    // alpha is a memo table. An element alpha(k, v) records the score of the
    // best sequence of tags from position 1 to position k with v being the end
    // tag.
    Tensor alpha;
    T* alpha_value = alpha.mutable_data<T>(emission_dims, platform::CPUPlace());
    Tensor track;
    int* track_value =
        track.mutable_data<int>(emission_dims, platform::CPUPlace());
114 115 116
    auto ker =
        jit::KernelFuncs<jit::CRFDecodingTuple<T>, platform::CPUPlace>::Cache()
            .At(tag_num);
117
    ker(static_cast<int>(seq_len), x, w, alpha_value, track_value, tag_num);
C
Cao Ying 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    T max_score = -std::numeric_limits<T>::max();
    int max_i = 0;
    for (size_t i = 0; i < tag_num; ++i) {
      T score = alpha_value[(seq_len - 1) * tag_num + i] + w[tag_num + i];
      if (score > max_score) {
        max_score = score;
        max_i = i;
      }
    }
    path[seq_len - 1] = max_i;
    for (int k = seq_len - 1; k >= 1; --k) {
      path[k - 1] = max_i = track_value[k * tag_num + max_i];
    }
  }
};

}  // namespace operators
}  // namespace paddle