gru_op.h 10.0 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

G
guosheng 已提交
27 28 29 30 31 32 33 34 35 36 37 38
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

template <typename Place, typename T>
inline void ReorderInitState(const platform::DeviceContext& ctx,
                             const framework::Tensor& src, const size_t* index,
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<Place, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
  row_shuffle(ctx, src, index, *dst, indexed_src);
}

G
guosheng 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename Place, typename T>
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    context.ShareLoD("Input", "Hidden");

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<Place, T> to_batch;
64 65
    auto& dev_ctx = context.device_context();
    to_batch(dev_ctx, *input, *batch_gate, true, is_reverse);
G
guosheng 已提交
66 67

    if (bias) {
68 69
      math::RowwiseAdd<Place, T> add_bias;
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
G
guosheng 已提交
70 71
    }

72
    int frame_size = hidden_dims[1];
G
guosheng 已提交
73 74 75 76
    math::hl_gru_value<T> gru_value;
    gru_value.gateWeight = const_cast<T*>(weight_data);
    gru_value.stateWeight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
G
guosheng 已提交
77 78 79 80 81 82 83 84 85 86 87 88
    Tensor ordered_h0;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<Place, T>(context.device_context(), *h0, order,
                                 &ordered_h0, true);
      gru_value.prevOutValue = ordered_h0.data<T>();
    } else {
      gru_value.prevOutValue = nullptr;
    }
G
guosheng 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
      gru_value.outputValue = hidden_t.data<T>();
      gru_value.gateValue = gate_t.data<T>();
      gru_value.resetOutputValue = reset_hidden_prev_t.data<T>();
      math::GRUUnitFunctor<Place, T>::compute(
103
          dev_ctx, gru_value, frame_size, cur_batch_size,
G
guosheng 已提交
104 105 106 107 108 109 110
          math::ActiveType(context.Attr<std::string>("activation")),
          math::ActiveType(context.Attr<std::string>("gate_activation")));
      gru_value.prevOutValue = gru_value.outputValue;
    }

    math::Batch2LoDTensorFunctor<Place, T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
111
    to_seq(dev_ctx, *batch_hidden, *hidden);
G
guosheng 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

template <typename Place, typename T>
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

    math::LoDTensor2BatchFunctor<Place, T> to_batch;
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
    math::SetConstant<Place, T> zero;
151 152 153 154
    auto& dev_ctx = context.device_context();
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
155

G
guosheng 已提交
156 157 158 159 160 161 162 163
    Tensor ordered_h0, ordered_h0_grad;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
      ReorderInitState<Place, T>(context.device_context(), *h0, order,
                                 &ordered_h0, true);
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
G
guosheng 已提交
164
      zero(context.device_context(), &ordered_h0_grad, static_cast<T>(0.0));
G
guosheng 已提交
165 166
    }

G
guosheng 已提交
167 168
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
169
    to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
170 171 172 173 174 175 176 177 178 179

    math::hl_gru_value<T> gru_value;
    gru_value.gateWeight = const_cast<T*>(weight_data);
    gru_value.stateWeight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

    math::hl_gru_grad<T> gru_grad;
    if (weight_grad) {
      gru_grad.gateWeightGrad =
          weight_grad->mutable_data<T>(context.GetPlace());
180
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
      gru_grad.stateWeightGrad =
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
      gru_grad.gateWeightGrad = nullptr;
      gru_grad.stateWeightGrad = nullptr;
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      gru_value.gateValue = gate_t.data<T>();
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      gru_value.resetOutputValue = reset_hidden_prev_t.data<T>();

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
      gru_grad.outputGrad = hidden_grad_t.data<T>();
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
      gru_grad.gateGrad = gate_grad_t.data<T>();
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
      gru_grad.resetOutputGrad = reset_hidden_prev_grad_t.data<T>();
      if (n == 0) {
G
guosheng 已提交
208 209 210
        gru_value.prevOutValue = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prevOutGrad =
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
211 212 213 214 215 216 217 218 219
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
        gru_value.prevOutValue = hidden_prev_t.data<T>();
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
        gru_grad.prevOutGrad = hidden_prev_grad_t.data<T>();
      }

      math::GRUUnitGradFunctor<Place, T>::compute(
220
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size,
G
guosheng 已提交
221 222 223 224 225 226 227
          math::ActiveType(context.Attr<std::string>("activation")),
          math::ActiveType(context.Attr<std::string>("gate_activation")));
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      math::Batch2LoDTensorFunctor<Place, T> to_seq;
      batch_gate_grad.set_lod(batch_gate->lod());
228
      to_seq(dev_ctx, batch_gate_grad, *input_grad);
G
guosheng 已提交
229 230 231
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
232 233
      math::ColwiseSum<Place, T> col_sum;
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
234
    }
G
guosheng 已提交
235 236 237 238
    if (h0 && h0_grad) {
      ReorderInitState<Place, T>(context.device_context(), ordered_h0_grad,
                                 order, h0_grad, false);
    }
G
guosheng 已提交
239 240 241 242 243 244 245 246 247
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle