reduce.h 43.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17 18 19
// CUDA and HIP use same api
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/framework/array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
39
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
40 41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/enforce.h"
42
#include "paddle/fluid/platform/fast_divmod.h"
43
#include "paddle/fluid/string/string_helper.h"
44 45

#include "paddle/pten/api/ext/dispatch.h"
46
#include "paddle/pten/backends/gpu/gpu_context.h"
47
#include "paddle/pten/core/dense_tensor.h"
48
#include "paddle/pten/kernels/cast_kernel.h"
49
#include "paddle/pten/kernels/copy_kernel.h"
50 51 52 53 54 55 56

// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4

namespace kps = paddle::operators::kernel_primitives;

57 58 59
namespace pten {
namespace kernels {

60 61 62 63 64 65 66 67 68 69 70 71 72 73
namespace details {

static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }

// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
74 75
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
                                             const std::vector<int>& idx) {
76
  int n = static_cast<int>(idx.size());
77 78
  if (n == 0) return std::vector<int>();
  std::vector<int> strides(n);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  strides.back() = 1;
  for (int i = n - 2; i >= 0; --i) {
    strides[i] = strides[i + 1] * dims[idx[i + 1]];
  }
  return strides;
}

// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
  return block_dim >= kps::details::kReduceMaxThread
             ? kps::details::kReduceMaxThread
             : GetLastPow2(block_dim);
}

// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
  if (rank % 2 == 0) {
    PADDLE_ENFORCE_EQ(reduce_rank,
                      rank / 2,
                      paddle::platform::errors::InvalidArgument(
                          "ReduceOp: invalid reduce rank. When rank = %d, "
                          "reduce_rank must be %d, but got %d.",
                          rank,
                          rank / 2,
                          reduce_rank));
  } else {
    auto lower_rank = (rank - 1) / 2;
    auto upper_rank = (rank + 1) / 2;
    PADDLE_ENFORCE_EQ(
        reduce_rank == lower_rank || reduce_rank == upper_rank,
        true,
        paddle::platform::errors::InvalidArgument(
            "ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
            "must be %d or %d, but got %d.",
            rank,
            lower_rank,
            upper_rank,
            reduce_rank));
  }
}

// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
static inline paddle::framework::Array<T, ElementCount> VectorToArray(
    const VectorLikeType& vec) {
  PADDLE_ENFORCE_LE(vec.size(),
                    ElementCount,
                    paddle::platform::errors::InvalidArgument(
                        "Cub reduce Array: size not match. Received "
                        "vec.size() %d > ElementCount %d.",
                        vec.size(),
                        ElementCount));
  size_t n = static_cast<size_t>(vec.size());
  paddle::framework::Array<T, ElementCount> ret;
  for (size_t i = 0; i < n; ++i) {
    ret[i] = vec[i];
  }
  return ret;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static inline std::vector<int> GetReduceDim(const std::vector<int64_t>& dims,
                                            int dim_size,
                                            bool reduce_all) {
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
      PADDLE_ENFORCE_LT(e,
                        dim_size,
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
                            dim_size,
                            e));
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}

164 165
}  // namespace details

166
constexpr int kMaxRank = paddle::framework::DDim::kMaxRank;
167 168 169 170 171 172 173 174 175

enum ReduceType {
  kReduceLastDim = 0x01,    // when reduce_dim[0] == x_dim.size() - 1;
  kReduceHigherDim = 0x02,  // ReduceFirstDim or reduceSecondDim
  kReduceAny = 0x03,        // when reduce_dim.size() > 1
};

struct IndexCalculator {
  IndexCalculator(int dim,
176 177 178
                  const std::vector<int>& cal_dims,
                  const std::vector<int>& cal_strides,
                  const std::vector<int>& full_strides)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
      : dim(dim) {
    dims = details::VectorToArray<int, kMaxRank>(cal_dims);
    strides = details::VectorToArray<int, kMaxRank>(full_strides);
    std::vector<paddle::platform::FastDivMod> cal_divmoders;
    // fast divmod
    for (auto i : cal_strides) {
      cal_divmoders.push_back(paddle::platform::FastDivMod(i));
    }
    divmoders = details::VectorToArray<paddle::platform::FastDivMod, kMaxRank>(
        cal_divmoders);
  }

  __device__ inline int operator()(int offset) const {
    int index = 0;
#pragma unroll
    for (int i = 0; i < kMaxRank; ++i) {
      if (i == dim) {
        break;
      }
      auto divmod = divmoders[i].Divmod(offset);
      index += (divmod.val[0] * strides[dims[i]]);
      offset = divmod.val[1];
    }
    return index;
  }

  int dim;
  paddle::framework::Array<int, kMaxRank> dims;
  paddle::framework::Array<int, kMaxRank> strides;
  paddle::framework::Array<paddle::platform::FastDivMod, kMaxRank> divmoders;
};

template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
  const kps::DimConfig dim;
  HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
      : dim(dims) {}

  __device__ __forceinline__ int BlockIdX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    } else {
      return cluster_id() % dim.split_num_x;
    }
#else
    return blockIdx.x;
#endif
  }

  __device__ __forceinline__ int BlockIdY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return (cluster_id() % dim.split_num_x);
    } else {
      return (cluster_id() / dim.split_num_x % dim.split_num_y);
    }
#else
    return blockIdx.y;
#endif
  }

  __device__ __forceinline__ int BlockDimX() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_x;
#else
    return blockDim.x;
#endif
  }

  __device__ __forceinline__ int BlockDimY() {
#ifdef PADDLE_WITH_XPU2
    return dim.deal_size_y;
#else
    return blockDim.y;
#endif
  }

  __device__ __forceinline__ int GridDimX() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_y;
    } else {
      return dim.split_num_x;
    }
#else
    return gridDim.x;
#endif
  }

  __device__ __forceinline__ int GridDimY() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.split_num_x;
    } else {
      return dim.split_num_y;
    }
#else
    return gridDim.y;
#endif
  }

  __device__ __forceinline__ int GetLoopSize() {
#ifdef PADDLE_WITH_XPU2
    if (ReduceLastDim) {
      return dim.deal_size_y;
    } else {
      return dim.deal_size_x;
    }
#else
    return 1;
#endif
  }
};

// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
  explicit OneDimIndexCal(int num) : stride(num) {}

  __device__ inline int operator()(int index) const { return index * stride; }
  int stride;
};

// reduce config
template <typename Ty>
struct ReduceConfig {
306 307
  ReduceConfig(const std::vector<int>& origin_reduce_dims,
               const std::vector<int>& origin_x_dim)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
      : reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}

  // get the parameters of reduceKernel
  void Run() {
    // step1: update the reduce_dim left_dim and x_dim
    SetReduceDim();

    // step2: get the strides of dim for reduceAny and reduceLastDim
    SetStrides();

    // step3: get the type of reduce
    SetReduceType();

    // step4: set the block and grid for launch kernel
    SetBlockDim();
  }

  // when should_reduce_again is true, we need malloc temp space for temp data
  void SetOutputData(Ty* y_data,
                     const paddle::platform::Place& place,
                     pten::DenseTensor* tmp) {
    if (should_reduce_again) {
      tmp->Resize(paddle::framework::make_ddim(
          {static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
      output_data = tmp->mutable_data<Ty>();
    } else {
      output_data = y_data;
    }
  }

 private:
  // set reduce_dim, left_dim and update x_dim
  // eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
  //     --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
  void SetReduceDim() {
343
    std::set<int> reduce_set;
344 345 346 347 348
    for (auto e : reduce_dims_origin) {
      auto pos = e >= 0 ? e : e + x_dim.size();
      reduce_set.insert(pos);
    }

349
    std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
350 351 352
    std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());

    // update reduce_dim and x_dim
353
    std::vector<int> x_new_dim;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

    reduce_dim.push_back(reduce_dim_temp[0]);
    x_new_dim.push_back(x_dim[0]);

    int idx_reduce = 1;
    int num = 0;

    if (reduce_dim_temp.size() > 1) {
      for (int i = 1; i < x_dim.size(); i++) {
        if ((idx_reduce < reduce_dim_temp.size()) &&
            (i == reduce_dim_temp[idx_reduce])) {
          int result =
              reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
          bool is_equal = ((result - num) == 1);
          if (is_equal) {
            x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
            num++;
          } else {
            reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
            x_new_dim.push_back(x_dim[i]);
          }
          idx_reduce++;
        } else {
          x_new_dim.push_back(x_dim[i]);
        }
      }
    } else {
      x_new_dim = x_dim;
    }

    // update x_dim
    x_dim = x_new_dim;
386
    std::vector<int>().swap(x_new_dim);
387

388
    std::vector<int> reduce_dim_new;
389 390 391 392 393
    int is_reduced = 0;
    for (auto e : reduce_dim) {
      is_reduced |= 1 << e;
    }

394
    std::vector<int>().swap(reduce_dim);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

    for (int i = 0; i < x_dim.size(); i++) {
      if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
        x_new_dim.push_back(x_dim[i]);
        if ((is_reduced >> i) & 1)
          reduce_dim_new.push_back(x_new_dim.size() - 1);
      } else {
        x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
      }
    }

    x_dim = x_new_dim;
    reduce_dim = reduce_dim_new;

    int x_rank = static_cast<int>(x_dim.size());
    std::set<int> left_set;

    for (int i = 0; i < x_rank; ++i) {
      left_set.insert(i);
    }

    for (auto e : reduce_dim) {
      left_set.erase(e);
    }

    left_dim.assign(left_set.begin(), left_set.end());

    // if the last dim gets involved in reduction
    reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
  }

  // set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
  // eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
  //     --SetStrides--> x_strides= [6,1], reduce_strides = [1],
  //     left_strides = [1]
  void SetStrides() {
431
    std::vector<int> idx_dim;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    for (int i = 0; i < x_dim.size(); i++) {
      idx_dim.push_back(i);
    }

    x_strides = details::GetDimStrides(x_dim, idx_dim);
    reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
    left_strides = details::GetDimStrides(x_dim, left_dim);
    reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];

    left_num = 1;
    if (left_dim.size()) {
      left_num = left_strides[0] * x_dim[left_dim[0]];
    }
  }

  // get the reduceType
  // eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
  //     x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
  //     x_dim = [8] reduce_dim = [0] --> reduceAll
  //     x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
  void SetReduceType() {
    int rank = x_dim.size();
    int reduce_rank = reduce_dim.size();
    bool is_last_dim =
        (rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
    if (rank == reduce_rank || is_last_dim) {
      reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
    } else if (reduce_rank == 1) {
// ReduceFirstDim and reduceSecondDim
#ifdef PADDLE_WITH_XPU2
      if (reduce_dim[0] == 0) {
        reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
      } else {
        reduce_type = static_cast<int>(ReduceType::kReduceAny);
      }
#else
      reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
#endif
    } else {
      reduce_type = static_cast<int>(ReduceType::kReduceAny);
    }
  }

  void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
    constexpr int min_reduce_num_per_thread = 16;
    constexpr int max_reduce_num_per_thread = 256;
    constexpr int max_num_threads = kps::details::kReduceMaxThread;

    // set block size.
    // 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
    //    will process the reduction for one output.
    //    The number of output for one block is blockDim.y;
    // 2. If reduce_last_dim == false, different threadIdx.x will process
    //    different reduction and gets the output separately. If it is
    //    necessary, it should reduce in block y.
    //    The number of output for one block is blockDim.x;
    int block_x, block_y;
    int grid_num, reduce_num_per_thread;
    if (reduce_last_dim) {
      block_x = details::GetBlockDim(reduce_num);
      block_y = details::GetBlockDim(left_num);
      block_dim->x = block_x;
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      grid_num = details::AlignUp(left_num, block_dim->y);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
    } else {
      block_x = details::GetBlockDim(left_num);
      block_y = details::GetBlockDim(reduce_num);
      block_dim->x = std::min(block_x, 32);
      block_dim->y =
          std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
      block_dim->x =
          std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
      grid_num = details::AlignUp(left_num, block_dim->x);
      reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
    }
    int device_id = paddle::platform::GetCurrentDeviceId();
510
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
511
    int max_threads_per_mp =
512
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    int max_threads = max_threads_per_mp * max_mp;
    int num_threads = block_dim->x * block_dim->y;
    int max_num_blocks = max_threads / num_threads;

    // set grid size.
    // Whether to set grid.y larger than 1, there are 3 following rules:
    // 1. The number that each thread process should no less than
    //    min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
    // 2. It should maximize the utilization of SM.
    // So we choose the minimum between input_split_num_1 and input_split_num_3
    // to make each thread process as mush data as possible. Meanwhile,
    // the number cannot be larger than max_reduce_num_per_thread, so we
    // choose the maximum between the result above and input_split_num_2.
    int input_split_num_1 =
        details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
    int input_split_num_2 =
        details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
    int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);

    grid_dim->x = grid_num;
    grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
                           input_split_num_2);
    // if grid.y > 1, we need launch reduce kernel again.
    if (grid_dim->y > 1) {
      should_reduce_again = true;
    }
  }

  // set block and grid for launch kernel
  // for ReduceHigherDim: if block is enough -> splite reduce_num
  //                     else init block(32, 1) grid(block_num, 1)
  // for others: block(block_num, 1) , grid(left_num, 1)
  void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
    int last_dim_num = x_dim.back();
    // update left_num
    int grid_z = left_num / last_dim_num;
    left_num = last_dim_num;
    grid_dim->z = grid_z;
    int device_id = paddle::platform::GetCurrentDeviceId();
552
    int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
553
    int max_threads_per_mp =
554
        paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    int max_threads = max_threads_per_mp * max_mp;
    // init
    int num_block = (max_threads / left_num);
    block_dim->x = details::GetBlockDim(left_num);
    grid_dim->x = details::AlignUp(left_num, block_dim->x);
    blocking_size = reduce_num;

    if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
      blocking_size = details::GetLastPow2(reduce_num / num_block);
      if (blocking_size <= 1) {
        blocking_size = details::GetLastPow2(sqrt(reduce_num));
      } else if (blocking_size * 2 < reduce_num) {
        blocking_size *= 2;
      }
      should_reduce_again = true;
      grid_dim->y = details::AlignUp(reduce_num, blocking_size);
    }
  }

  void SetBlockDim() {
    // init
    int block_num = details::GetBlockDim(reduce_num);
    should_reduce_again = false;
    dim3 block_dim(block_num, 1, 1);
    dim3 grid_dim(left_num, 1, 1);
    blocking_size = reduce_num;
#ifdef PADDLE_WITH_XPU2
    if (reduce_last_dim) {
      block_dim.x = 128;
      block_dim.y = reduce_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    } else {
      block_dim.x = 128;
      block_dim.y = left_num;
      grid_dim.x = 8;
      grid_dim.y = 1;
    }
#else
    if (reduce_type == ReduceType::kReduceHigherDim) {
      SetBlockDimForHigher(&block_dim, &grid_dim);
    } else {
      SetBlockDimForReduceAny(&block_dim, &grid_dim);
    }
#endif

    block = block_dim;
    grid = grid_dim;
  }

 public:
606 607 608 609 610 611 612
  std::vector<int> reduce_dims_origin;
  std::vector<int> reduce_dim;
  std::vector<int> x_dim;
  std::vector<int> left_dim;
  std::vector<int> x_strides;
  std::vector<int> left_strides;
  std::vector<int> reduce_strides;
613 614 615 616 617 618 619 620 621 622 623 624 625 626

  int reduce_type;
  int reduce_num;
  int left_num;
  int blocking_size;
  bool should_reduce_again;
  bool reduce_last_dim;

  Ty* output_data;

  dim3 block;
  dim3 grid;
};

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp,
          typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x,
                                Ty* y,
                                ReduceOp reducer,
                                TransformOp transformer,
                                MPType init,
                                int reduce_num,
                                int left_num,
                                bool reduce_last_dim,
                                const Calculator reduce_index_calculator,
                                const Calculator left_index_calculator,
                                const kps::DimConfig dim) {
  int input_idx, left_idx, stride;
  int block_size = 0;
  bool need_store = true;
  int loop_left = 0;
  int tid = 0;
  // the last dim gets involved in reduction
  int store_offset = 0;
  int stride_left = 0;
  if (reduce_last_dim) {
    auto block = ReduceIndexMapping<true>(dim);
    input_idx = block.BlockIdY() * block.BlockDimX();
    left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
    stride = block.GridDimY() * block.BlockDimX();
    block_size = block.BlockDimX();
    need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
    store_offset = block.BlockIdY() * left_num + left_idx;
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = 1;
    tid = threadIdx.x;
  } else {
    auto block = ReduceIndexMapping<false>(dim);
    input_idx = block.BlockIdY() * block.BlockDimY();
    left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
    stride = block.GridDimY() * block.BlockDimY();
    block_size = block.BlockDimY();
    need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
    loop_left = min(block.GetLoopSize(), left_num - left_idx);
    stride_left = block.BlockDimX() * block.GridDimX();
    store_offset = block.BlockIdY() * left_num + left_idx;
    tid = threadIdx.y;
  }
  // calculate the offset, means the addr where each thread really start.
  // 1. reduce for each thread
  MPType input_compute[REDUCE_VEC_SIZE];
  Tx input_reg[REDUCE_VEC_SIZE];
  for (int i = 0; i < loop_left; i += stride_left) {
    int input_offset = left_index_calculator(left_idx + i);
    const Tx* input = x + input_offset;
    MPType reduce_var = init;
    // load REDUCE_VEC_SIZE data once, and then compute
    int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
    for (; input_idx + block_size < bound;
         input_idx += REDUCE_VEC_SIZE * stride) {
      kps::ReadDataReduce<Tx,
                          Tx,
                          1,
                          REDUCE_VEC_SIZE,
                          1,
                          1,
                          Calculator,
                          kps::IdentityFunctor<Tx>,
                          false>(&input_reg[0],
                                 input,
                                 input_idx,
                                 reduce_index_calculator,
                                 1,
                                 reduce_num,
                                 1,
                                 stride,
                                 kps::IdentityFunctor<Tx>(),
                                 reduce_last_dim);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &input_compute[0], &input_reg[0], transformer);
      kps::Reduce<MPType,
                  REDUCE_VEC_SIZE,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &input_compute[0], reducer, reduce_last_dim);
    }

    kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
    kps::ReadDataReduce<Tx,
                        MPType,
                        1,
                        REDUCE_VEC_SIZE,
                        1,
                        1,
                        Calculator,
                        TransformOp,
                        true>(&input_compute[0],
                              input,
                              input_idx,
                              reduce_index_calculator,
                              1,
                              reduce_num - input_idx,
                              1,
                              stride,
                              transformer,
                              reduce_last_dim);
    kps::Reduce<MPType,
                REDUCE_VEC_SIZE,
                1,
                1,
                ReduceOp,
                kps::details::ReduceMode::kLocalMode>(
        &reduce_var, &input_compute[0], reducer, reduce_last_dim);

    kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
        &reduce_var, &reduce_var, reducer, reduce_last_dim);
    if (need_store) {
      y[store_offset + i] = static_cast<Ty>(reduce_var);
    }
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
__global__ void ReduceHigherDimKernel(const Tx* x,
                                      Ty* y,
                                      ReduceOp reducer,
                                      TransformOp transformer,
                                      MPType init,
                                      int reduce_num,
                                      int left_num,
                                      int blocking_size,
                                      const kps::DimConfig dim) {
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  auto block = ReduceIndexMapping<false>(dim);
  int idy = block.BlockIdY() * blocking_size;
  int idx = block.BlockIdX() * block.BlockDimX();
  int idz = BLOCK_ID_Z * left_num;
  int stride = dim.split_num_x * dim.deal_size_x;
  int size = left_num - dim.rem_x;
  int loop_size = min(reduce_num - idy, blocking_size);
  int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
  int block_offset = idy * left_num + idz * reduce_num;
  const Tx* input = x + block_offset;
  Tx reduce_input;
  for (; idx < size; idx += stride) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, false>(&reduce_input,
                                            input + loop_idx * left_num + idx,
                                            block.BlockDimX(),
                                            1,
                                            1,
                                            left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, false>(
        y + store_offset + idx, &result, block.BlockDimX());
  }

  if (idx < left_num) {
    MPType reduce_var = init;
    MPType reduce_compute = init;
    for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
      kps::ReadData<Tx, Tx, 1, 1, 1, true>(&reduce_input,
                                           input + loop_idx * left_num + idx,
                                           dim.rem_x,
                                           1,
                                           1,
                                           left_num);
      kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
          &reduce_compute, &reduce_input, transformer);
      kps::Reduce<MPType,
                  1,
                  1,
                  1,
                  ReduceOp,
                  kps::details::ReduceMode::kLocalMode>(
          &reduce_var, &reduce_compute, reducer, false);
    }
    Ty result = static_cast<Ty>(reduce_var);
    kps::WriteData<Ty, 1, 1, 1, true>(
        y + store_offset + idx, &result, dim.rem_x);
  }
}

template <typename Tx,
          typename Ty,
          typename MPType,
          typename ReduceOp,
          typename TransformOp>
837 838 839
static void LaunchReduceKernel(const Tx* x_data,
                               Ty* y_data,
                               const ReduceOp& reducer,
840
                               const TransformOp& transform,
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
                               MPType init,
                               gpuStream_t stream,
                               ReduceConfig<Ty> config) {
  if (config.reduce_type == kReduceLastDim) {
    int stride_reduce = 1;
    int stride_left = config.reduce_num;
    // for higher performance
    auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
    auto left_index_calculator = OneDimIndexCal(stride_left);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    OneDimIndexCal><<<8, 128, stream>>>(x_data,
                                                        config.output_data,
                                                        reducer,
                                                        transform,
                                                        init,
                                                        config.reduce_num,
                                                        config.left_num,
                                                        config.reduce_last_dim,
                                                        reduce_index_calculator,
                                                        left_index_calculator,
                                                        dim);
876
#else
877 878 879 880 881 882
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    OneDimIndexCal><<<config.grid, config.block, 0, stream>>>(
883 884 885
        x_data,
        config.output_data,
        reducer,
886
        transform,
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif

  } else {
    int reduce_rank = config.reduce_strides.size();
    int left_rank = config.left_strides.size();
    auto reduce_index_calculator = IndexCalculator(reduce_rank,
                                                   config.reduce_dim,
                                                   config.reduce_strides,
                                                   config.x_strides);
    auto left_index_calculator = IndexCalculator(
        left_rank, config.left_dim, config.left_strides, config.x_strides);

    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.block.y,
                                        0);
    dim.SetRem(config.reduce_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
915 916 917 918 919 920
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    IndexCalculator><<<8, 128, stream>>>(
921 922 923
        x_data,
        config.output_data,
        reducer,
924
        transform,
925 926 927 928 929 930 931 932
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#else
933 934 935 936 937 938
    ReduceAnyKernel<Tx,
                    Ty,
                    MPType,
                    ReduceOp,
                    TransformOp,
                    IndexCalculator><<<config.grid, config.block, 0, stream>>>(
939 940 941
        x_data,
        config.output_data,
        reducer,
942
        transform,
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
        init,
        config.reduce_num,
        config.left_num,
        config.reduce_last_dim,
        reduce_index_calculator,
        left_index_calculator,
        dim);
#endif
  }

  if (config.should_reduce_again) {
    dim3 block;
    dim3 grid;
    if (config.reduce_last_dim) {
      block = dim3(32, 1, 1);
      grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
    } else {
      block = dim3(config.block.x, 1, 1);
      grid = dim3(config.grid.x, 1, config.grid.z);
    }

    auto last_index = OneDimIndexCal(1);
    auto first_index = OneDimIndexCal(config.left_num);
    kps::DimConfig dim =
        kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
    dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU2
970 971 972 973 974
    ReduceHigherDimKernel<Ty,
                          Ty,
                          MPType,
                          ReduceOp,
                          kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
975 976 977
        config.output_data,
        y_data,
        reducer,
978
        kps::IdentityFunctor<Ty, MPType>(),
979 980 981 982 983 984
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#else
985
    ReduceHigherDimKernel<
986 987 988 989 990 991 992 993
        Ty,
        Ty,
        MPType,
        ReduceOp,
        kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
        config.output_data,
        y_data,
        reducer,
994
        kps::IdentityFunctor<Ty, MPType>(),
995 996 997 998 999 1000 1001 1002 1003
        init,
        config.grid.y,
        config.left_num,
        config.grid.y,
        dim);
#endif
  }
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
static
    typename std::enable_if<!std::is_same<Tx, paddle::platform::float16>::value,
                            void>::type
    CubTensorReduceFunctorImpl(const Tx* x_data,
                               Ty* y_data,
                               const TransformOp& transform,
                               int reduce_num,
                               const paddle::platform::Place& place,
                               gpuStream_t stream) {
  auto reducer = ReduceOp<Ty>();
  cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(x_data,
                                                                  transform);
  size_t temp_storage_bytes = 0;
  cub::DeviceReduce::Reduce(nullptr,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);

  pten::DenseTensor tmp = pten::DenseTensor(
      pten::make_intrusive<paddle::experimental::SharedStorage>(place),
      pten::DenseTensorMeta(pten::DataType::UINT8,
                            paddle::framework::make_ddim(
                                {static_cast<int64_t>(temp_storage_bytes)})));

  auto* temp_storage = tmp.mutable_data<uint8_t>();

  cub::DeviceReduce::Reduce(temp_storage,
                            temp_storage_bytes,
                            trans_x,
                            y_data,
                            reduce_num,
                            reducer,
                            reducer.initial(),
                            stream);
}

template <typename Tx,
          typename Ty,
          template <typename> class ReduceOp,
          typename TransformOp>
static
    typename std::enable_if<std::is_same<Tx, paddle::platform::float16>::value,
                            void>::type
    CubTensorReduceFunctorImpl(const Tx* x_data,
                               Ty* y_data,
                               const TransformOp& transform,
                               int reduce_num,
                               const paddle::platform::Place& place,
                               gpuStream_t stream) {
  PADDLE_THROW(paddle::platform::errors::InvalidArgument(
      "Tx should not be float16 when using cub::DeviceReduce::Reduce()."));
}

static void AsyncCopy(const pten::DenseTensor& src, pten::DenseTensor* dst) {
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
  const paddle::platform::CUDADeviceContext* dev_ctx;
  if (paddle::platform::is_gpu_place(dst->place()) ||
      paddle::platform::is_npu_place(dst->place())) {
    dev_ctx = static_cast<paddle::platform::CUDADeviceContext*>(
        pool.Get(dst->place()));

  } else {
    dev_ctx = static_cast<paddle::platform::CUDADeviceContext*>(
        pool.Get(src.place()));
  }

  pten::Copy(*dev_ctx, src, false, dst);
}

1082 1083
template <typename Tx,
          typename Ty,
1084 1085
          template <typename> class ReduceOp,
          typename TransformOp>
1086 1087
void TensorReduceFunctorImpl(const pten::DenseTensor& x,
                             pten::DenseTensor* y,
1088 1089
                             const TransformOp& transform,
                             const std::vector<int>& origin_reduce_dims,
1090 1091 1092
                             gpuStream_t stream) {
  // Allocate memory
  y->mutable_data<Ty>();
1093 1094

  auto x_dim = paddle::framework::vectorize<int>(x.dims());
1095 1096
  auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
  config.Run();
1097
  int numel = x.numel();
1098 1099 1100 1101
  // after config.run()
  // SetOutputData for ReduceHigherDim when should_reduce_again is true,
  // temp_output should be stored temp_data in output_data space or stored in
  // y_data;
1102

1103 1104
  pten::DDim tmp_ddim;
  pten::DenseTensor tmp = pten::DenseTensor(
1105 1106
      pten::make_intrusive<paddle::experimental::SharedStorage>(y->place()),
      pten::DenseTensorMeta(y->dtype(), tmp_ddim, y->layout()));
1107 1108 1109 1110 1111 1112 1113 1114 1115

  auto x_data = x.data<Tx>();
  auto y_data = y->mutable_data<Ty>();

  auto* dev_ctx = static_cast<paddle::platform::CUDADeviceContext*>(
      paddle::platform::DeviceContextPool::Instance().Get(x.place()));
  if (config.reduce_num == 1) {
    auto out_dims = y->dims();
    if (x.dtype() == y->dtype()) {
C
chentianyu03 已提交
1116
      AsyncCopy(x, y);
1117 1118
      y->Resize(out_dims);
    } else {
1119
      pten::CastKernel<Tx>(*dev_ctx, x, y->dtype(), y);
1120 1121 1122 1123 1124
    }
    return;
  }

  config.SetOutputData(y_data, x.place(), &tmp);
1125 1126
  constexpr bool kIsTxFP16 = std::is_same<Tx, paddle::platform::float16>::value;
  bool use_cub_reduce = config.reduce_num == numel && !kIsTxFP16;
1127
  if (use_cub_reduce) {
1128 1129
    CubTensorReduceFunctorImpl<Tx, Ty, ReduceOp, TransformOp>(
        x_data, y_data, transform, config.reduce_num, x.place(), stream);
1130 1131 1132
    return;
  }

1133 1134
  using MPType = typename kps::details::MPTypeTrait<Ty>::Type;
  auto reducer = ReduceOp<MPType>();
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
  // launch ReduceHigherDimKernel
  // when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
  // function will be used
  // eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
  //     if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
  //     32
  //     else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
  if (config.reduce_type == ReduceType::kReduceHigherDim) {
    kps::DimConfig dim = kps::DimConfig(config.grid.x,
                                        config.grid.y,
                                        config.grid.z,
                                        config.block.x,
                                        config.blocking_size,
                                        0);
    dim.SetRem(config.left_num % config.block.x,
               config.reduce_num % config.blocking_size,
               0);

#ifdef PADDLE_WITH_XPU2
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    ReduceHigherDimKernel<Tx,
                          Ty,
                          MPType,
                          ReduceOp<MPType>,
                          TransformOp><<<8, 128, stream>>>(x_data,
                                                           config.output_data,
                                                           reducer,
                                                           transform,
                                                           reducer.initial(),
                                                           config.reduce_num,
                                                           config.left_num,
                                                           config.blocking_size,
                                                           dim);
1167
#else
1168
    ReduceHigherDimKernel<
1169 1170 1171
        Tx,
        Ty,
        MPType,
1172
        ReduceOp<MPType>,
1173 1174 1175 1176
        TransformOp><<<config.grid, config.block, 0, stream>>>(
        x_data,
        config.output_data,
        reducer,
1177
        transform,
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        reducer.initial(),
        config.reduce_num,
        config.left_num,
        config.blocking_size,
        dim);
#endif

    if (config.should_reduce_again) {
      dim3 block = dim3(config.block.x, 1, 1);
      dim3 grid = dim3(config.grid.x, 1, config.grid.z);
      kps::DimConfig dim2 =
          kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
      dim2.SetRem(config.left_num % config.block.x, 0, 0);

#ifdef PADDLE_WITH_XPU2
1193
      ReduceHigherDimKernel<
1194 1195 1196
          Ty,
          Ty,
          MPType,
1197
          ReduceOp<MPType>,
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
          kps::IdentityFunctor<Ty, MPType>><<<8, 128, stream>>>(
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#else
1209
      ReduceHigherDimKernel<
1210 1211 1212
          Ty,
          Ty,
          MPType,
1213
          ReduceOp<MPType>,
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
          kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
          config.output_data,
          y_data,
          reducer,
          kps::IdentityFunctor<Ty, MPType>(config.grid.y),
          reducer.initial(),
          config.grid.y,
          config.left_num,
          config.grid.y,
          dim2);
#endif
    }
    return;
  }

  // when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
  // when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
  // function will be used
1232 1233
  LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>(
      x_data, y_data, reducer, transform, reducer.initial(), stream, config);
1234 1235
}

1236
}  // namespace kernels
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

template <typename T,
          template <typename> class ReduceOp,
          template <typename, typename> class TransformOp>
void Reduce(const GPUContext& dev_ctx,
            const DenseTensor& x,
            bool reduce_all,
            const std::vector<int64_t>& dims,
            bool keep_dim,
            DataType out_dtype,
            DenseTensor* out) {
  std::vector<int> reduce_dims =
      pten::kernels::details::GetReduceDim(dims, x.dims().size(), reduce_all);

  int reduce_num = 1;
  for (auto i : reduce_dims) {
    reduce_num *= (x.dims())[i];
  }

  gpuStream_t stream = dev_ctx.stream();

  if (out_dtype != pten::DataType::UNDEFINED && out_dtype != x.dtype()) {
    PD_DISPATCH_FLOATING_AND_COMPLEX_AND_2_TYPES(
        pten::DataType::INT32,
        pten::DataType::INT64,
        out_dtype,
        "TensorReduceFunctorImpl",
        ([&] {
          using MPType = typename kps::details::MPTypeTrait<data_t>::Type;
          pten::kernels::TensorReduceFunctorImpl<T,
                                                 data_t,
                                                 ReduceOp,
                                                 TransformOp<T, MPType>>(
              x, out, TransformOp<T, MPType>(reduce_num), reduce_dims, stream);
        }));
  } else {
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
    pten::kernels::
        TensorReduceFunctorImpl<T, T, ReduceOp, TransformOp<T, MPType>>(
            x, out, TransformOp<T, MPType>(reduce_num), reduce_dims, stream);
  }
}
1279
}  // namespace pten
1280 1281

#endif