gradientsign.py 2.7 KB
Newer Older
G
gx_wind 已提交
1 2 3 4 5 6 7
"""
This module provide the attack method for FGSM's implement.
"""
from __future__ import division
import numpy as np
from collections import Iterable
from .base import Attack
G
gx_wind 已提交
8 9


G
gx_wind 已提交
10 11 12 13 14 15 16 17
class GradientSignAttack(Attack):
    """
    This attack was originally implemented by Goodfellow et al. (2015) with the
    infinity norm (and is known as the "Fast Gradient Sign Method"). This is therefore called
    the Fast Gradient Method.
    Paper link: https://arxiv.org/abs/1412.6572
    """

G
gx_wind 已提交
18 19 20
    def _apply(self, image_label, epsilons=1000):
        assert len(image_label) == 1
        pre_label = np.argmax(self.model.predict(image_label))
G
gx_wind 已提交
21 22

        min_, max_ = self.model.bounds()
G
gx_wind 已提交
23
        gradient = self.model.gradient(image_label)
G
gx_wind 已提交
24 25 26
        gradient_sign = np.sign(gradient) * (max_ - min_)

        if not isinstance(epsilons, Iterable):
G
gx_wind 已提交
27
            epsilons = np.linspace(0, 1, num=epsilons + 1)
G
gx_wind 已提交
28 29

        for epsilon in epsilons:
G
gx_wind 已提交
30
            adv_img = image_label[0][0].reshape(
G
gx_wind 已提交
31
                gradient_sign.shape) + epsilon * gradient_sign
G
gx_wind 已提交
32 33 34 35 36
            adv_img = np.clip(adv_img, min_, max_)
            adv_label = np.argmax(self.model.predict([(adv_img, 0)]))
            if pre_label != adv_label:
                return adv_img

G
gx_wind 已提交
37

G
gx_wind 已提交
38
FGSM = GradientSignAttack
39 40 41 42 43 44 45


class IteratorGradientSignAttack(Attack):
    """
    This attack was originally implemented by Alexey Kurakin(Google Brain).
    Paper link: https://arxiv.org/pdf/1607.02533.pdf
    """
R
root 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    def _apply(self, image_label, epsilons=100, steps=10):
        """
        Apply the iterative gradient sign attack.
        Args:
            image_label(list): The image and label tuple list of one element.
            epsilons(list|tuple|int): The epsilon (input variation parameter).
            steps(int): The number of iterator steps.
        Return:
            numpy.ndarray: The adversarail sample generated by the algorithm.
        """
        assert len(image_label) == 1
        pre_label = np.argmax(self.model.predict(image_label))
        gradient = self.model.gradient(image_label)
        min_, max_ = self.model.bounds()

        if not isinstance(epsilons, Iterable):
            epsilons = np.linspace(0, 1, num=epsilons + 1)

        for epsilon in epsilons:
            adv_img = image_label[0][0].reshape(gradient.shape)
            for _ in range(steps):
                gradient = self.model.gradient([(adv_img, image_label[0][1])])
                gradient_sign = np.sign(gradient) * (max_ - min_)
                adv_img = adv_img + epsilon * gradient_sign
                adv_img = np.clip(adv_img, min_, max_)
                adv_label = np.argmax(self.model.predict([(adv_img, 0)]))
                if pre_label != adv_label:
                    return adv_img